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Framework

Framework

Consider Magnetic Schrödinger Operator

H := h2D2
1 + (hD2 − µx1)2 + h2D2

3 + V (x) (1)

but the similar results hold for a more general operator

H :=
∑
j ,k

(
hDj − µAj(x)

)
g jk
(
hDk − µAk(x)

)
+ V (x) (2)

provided

Magnetic intensity F = ∇× A is disjoint from 0.

Here h� 1 and µ� 1 are semiclassical parameter and magnetic field
intensity. (1) is a canonical form of such operator with Euclidean metrics
and constant magnetic field.
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Framework

We assume that this operator is self-adjoint. Let E (τ) be its spectral
projector, e(x , y , τ) its Schwartz kernel and we are interested in pointwise
spectral asymptotics

e(x , x , τ) as h→ +0, µ→ +∞. (3)

Usually I studied local spectral asymptotics∫
e(x , x , τ)ψ(x) dx as h→ +0, µ→ +∞ (4)

with ψ ∈ C∞0 because from it one can assemble an eigenvalue counting
function given by the same expression with ψ = 1.

Remark

We take |τ | ≤ c and often τ = 0.
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Framework

Simple scaling x → µx , h→ µh, µ→ 1 implies

e(x , x , τ) = NW(x , τ) + O(µh1−d) as µh ≤ 1. (5)

where NW = const (τ − V )
d/2
+ is a Weyl expression.

Can we do better
than this? Generally in dimension 2 the answer is no: if we consider in R2

operator (1) with V = 0 then it has pure point of infinite multiplicity
spectrum consisting of Landau levels (2j + 1)µh, j = 0, 1, . . . and

e(x , x , τ) = NMW(x , τ) := (2π)−1µh−1
∑
j

θ(τ −V (x)− (2j + 1)µh) (6)

with Heaviside function θ. As τ goes through Landau level it jumps by
µh−1. However under certain non-degeneracy assumptions remainder
estimate could be much better and this is the subject of the talk.
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Framework

We discuss 2D-case now

From the dynamical point of view a pilot-model operator with no electric
field is bad because all classical trajectories are periodic with periods
� µ−1 (they are circles with radii � µ−1 (as τ − V � 1)).

However let
add constant electric field. Then Hamiltonian trajectories (their
x-projections) are prolate cycloids

Figure: Drift is orthogonal to electric field and its speed is � µ−1α where α is
the electric intensity
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Framework

Electric field breaks periodicity (we need to check that it is the case in the
“quantum” sense) but assuming that our domain contains B(0, 2) where
operator is “good” and ψ is supported in B(0, 1) we know that there are
no periods ≤ εµ so actually our remainder estimate in local spectral
asymptotics O(T−1h−1) improves from O(µh−1) to O(µ−1h−1) as T
improves from εµ−1 to εµ.

Theorem (Old theorem)

As ∇V disjoint from 0∫
e(x , x , 0)ψ(x) dx =

∫
NMW(x , 0)ψ(x) dx + O(µ−1h−1) µh ≤ 1.

(7)
Further for µh ≥ 1 remainder estimate is O(1) as we consider
Schrödinger-Pauli operator (subtract (2n + 1)µh from H) and the principal
part is � µh−1.
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Framework

But what about pointwise asymptotics?

There are new villains - loops when trajectory returns to the same point x
but from the different direction:

(a) periodic

x

(b) loop

and there are plenty of loops in our case – and many of them are short!
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Framework

But we don’t care about many self-intersections on a single trajectory:
after ±1, ±2,. . . rotations
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Framework

However there are plenty of trajectories looping in the given point x .

x
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2D case

2D case

We consider a pilot-model with a constant electric field (i.e. linear V )

H = H̄ := h2D2
1 + (hD2 − µx1)2 + 2αx1 (8)

with α � 1. Results for general operators are similar.

We need to consider U(x , x , t) where U(x , y , t) is the Schwartz kernel for
propagator e ih

−1tH . If we rescale x 7→ µx , t 7→ µt (and T = εµ2),
h 7→ ~ = µh we can write precisely

U(x , y , t) = (2πh)−1µ

∫
u(x1, y1; η, t)e ih

−1(x2−y2)η dη (9)

with u(x1, y1; η, t) the Schwartz kernel of e i~
−1ta with 1D-harmonic

oscillator

a = ~2D2
1 + (x1 − η)2 + 2αµ−1x1 =

~2D2
1 + (x1 − η + αµ−1)2︸ ︷︷ ︸

ā

+µ−1α (2η − αµ−1)︸ ︷︷ ︸
ζ(η)

. (10)
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2D case

For the harmonic oscillator b = D2 + x2 the Schwartz kernel of e itb is
known exactly and after calculations we arrive to

U(x , y , t) = i(4π)−1µh−1 csc(t) e i~
−1φ(x ,y ,t) (11)

with

φ := −1

4
cot(t)(x1 − y1)2 +

1

2
(x1 + y1 + 2αµ−1)(x2 − y2 + 2tαµ−1)−

1

4
cot(t)(x2 − y2 + 2tαµ−1)2 − tα2µ−2 (12)

and then

U(0, 0, t) ≡ i(4π)−1µh−1 csc(t) e i~
−1φ̄(t) (13)

with

φ̄(t) := t2α2µ−2 cot(t) + α2µ−2t. (14)
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2D case

It allows us to write an exact formula for

Ft→µ−1h−1t χ̄T (t)U(0, 0, t) dt =

2i(4π)−2µh−1

∫
csc(t) e i~

−1(φ̄(t)−µ−2tτ)χ̄T (t) dt (15)

(χ̄ ∈ C∞0 ([−1, 1]), χ̄T (t) = χ̄(t/T ) and we can try to apply a stationary
phase to it; then we get

tk = −t−k , tk ∼ πk , sin(tk) ∼ αµ−1τ−
1
2πk (16)

and

Remark

The number of stationary points is ∼ 2π−1|α|−1µτ−
1
2 .
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2D case

Remark

Stationary phase method works for all k only if µ ≤ h−
1
2 . As

h−
1
2 ≤ µ ≤ h−1 this method works only for k : |k | ≥ µ2h.

Remark

Also it does not work well near “equator” (when trajectory at 0 is vertical).

However one can prove

Theorem

For d = 2

|Ft→µ−1h−1t χ̄T (t)U(0, 0, t)| ≤ Cµh−1 + Cµ
5
2 h−

1
2 . (17)

Here the main contribution into second term is delivered by points with
k � µ. This estimate holds also for Schrödinger-Pauli operator as
µ ≥ h−1. This theorem holds also for general operator (1) as |∇V | � 1.
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2D case

Due to the standard Tauberian theory (with T = εµ2) the above theorem
instantly implies:

Theorem

For d = 2

|e(0, 0, τ)− µ−1h−1

∫ τ

−∞

(
Ft→µ−1h−1t χ̄(t)U(0, 0, t)

)
dτ︸ ︷︷ ︸

Tauberian expression

| ≤

Cµ−1h−1 + Cµ
1
2 h−

1
2 . (18)

Note that the second term dominates as µ ≥ h−
1
3 .
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2D case

Now we need to calculate Tauberian expression.

Theorem

As 1 ≤ µ ≤ h−
1
2

|e(x , x , 0)−NW
x (0)| ≤ Cµ−1h−1 + Cµ

1
2 h−

1
2 + Cµ2h−

1
2 (19)

Here NW is a standard Weyl expression (contribution of t = 0) and the
last term estimates contributions of loops (and it is sharp!). Note that it is

the largest term for µ ≥ h−
1
6 .
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2D case

If we want a better remainder we must introduce a correction –
contributions of loops which are calculated by a stationary phase method.

Theorem

As 1 ≤ µ ≤ h−
1
2

|e(x , x , 0)−
(
NW

x (0) +NW
x ,corr(r)(0)

)
| ≤

Cµ−1h−1 + Cµ
1
2 h−

1
2 + Cµh−1

(
µ2h)r+ 1

2 +

C


(

h−1
(
hµ

5
2
)r+ 1

2 + µ
1
3 h−

2
3

)
as µ ≤ h−

2
5 ,

µ
5
3 h−

1
3 as µ ≥ h−

2
5 .

(20)

Here we take r terms in the stationary phase method but the remainder

estimate is good only as µ ≤ hδ−
1
2 and we need to take r = r(δ) terms to

eliminate the third term in the right-hand expression. The last term in the
right-hand expression is due to the “equator”.
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2D case

What to do as µ ≥ hδ−
1
2?

As µ ≥ h−
1
3 we just get expression for pilot-model as “a special function”

(withan explicit expression) and for a general operators we get

Theorem

(i) As µ ≥ h−
1
3

|e(x , x , τ)− ēx(x , x , τ)| ≤ Cµ
1
2 h−

1
2 +

C

{
h−1µ

1
2 as µ ≤ h−

1
2 ,

µ−
1
2 h−

3
2 as µ ≥ h−

1
2

(21)

where ēx(x , x , τ) is calculated for a pilot-model approximating general
operator at point x.. As µ ≥ h−1 we consider magnetic Schrödinger-Pauli
operator and can skip the last term.

For results as h−
1
3 ≤ µ ≤ h−1 see main text [1] for sharper asymptotics

but they include some correction.
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3D case

3D case

Consider now 3D case. It is related to 2D case but is drastically different.

Dynamically it is because there are magnetic lines (integral curves of
F = ∇× A) and trajectories are winding around them

F

(c) Helix

F

(d) Perturbed helix
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Dynamically it is because there are magnetic lines (integral curves of
F = ∇× A) and trajectories are winding around them

F

(e) Helix

F

(f) Perturbed helix
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3D case

They have double effect.

First, because speed along magnetic lines could
be � 1, T � 1 and T � µ before/after rescaling. So, our best possible
remainder estimate could be O(h−2) as µh ≤ 1 and O(µh−1) as µh ≥ 1
for Schrödinger-Pauli operator. Second, movement along magnetic lines
usually breaks periodicity:

Theorem (Old theorem)

|
∫

e(x , x , 0)ψ(x) dx −
∫
NMW(x , 0)ψ(x) dx | ≤

Ch−2 + Cµh−1−δ µh ≤ 1. (22)

where

NMW :=
1

4π

2∑
j

(
τ − (2j + 1)µhf − V

) 1
2

+
f µh−2, (23)

and under very weak non-degeneration assumption one can take δ = 0.
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3D case

Theorem (No non-degeneracy assumption)

|e(x , x , 0)−NW(x , 0)| ≤ Ch−2 + Cµ
3
2 h−

3
2 . (24)

In particular, as µ ≤ h−
1
3 remainder estimate is O(h−2).
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3D case

Consider a pilot-model in R3

H = H̄ := h2D2
1 + (hD2 − µx1)2 + h2D2

3 + 2αx1 + 2βx3. (25)

Then
U(3)(x , y , t) = U(2)(x ′, y ′, t)U(1)(x3, y3, t) (26)

where U(2) is former U, x ′ = (x1, x2) etc and U(1) is a constructed for
1D-operator h2D2

3 + 2βx3:

U(1)(x3, y3, t) =

1

2
(2πht)−

1
2 exp

(
ih−1

(
βt(x3 + y3) +

1

8
t−1(x3 − y3)2 − 2

3
β2t3

))
; (27)

in particular

U(1)(x3, x3, t) =
1

2
(2πh|t|)−

1
2 exp

(
ih−1

(
2βtx3 −

2

3
β2t3

))
. (28)
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3D case

In this case we have an explicit formula and we have a described above
2D-movement and (possibly looping) 1D-movement.

Then playing with oscillatory integrals we prove for the pilot-model (but

factor |t|−
1
2 plays a crucial role) and generalize for general operator we get

Theorem

Let µh ≤ 1 and

|∇⊥FV /F | � 1. (29)

Then

|Ft→µ−1h−1τ χ̄T (t)ΓxU| ≤ Cµh−2 + Cµ
5
2 h−1

(
1 + | logµh)|

)
(30)

and the Tauberian remainder estimate is O(h−2 + µ
3
2 h−1(1 + | logµh|)).
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3D case

Theorem

As µ ≤ h−
1
2 under non-degeneracy condition (29)

|e(x , x , 0)−NW
x (x , x , 0)| ≤ Ch−2 + Cµ

5
2 h−1 (31)

and

|e(x , x , 0)−NW
x (x , x , 0)−NW

x ,corr(r)| ≤ Ch−2 + Cµ
5
2 h−1(µ2h)r . (32)
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3D case

What to do as µ ≥ hδ−
1
2?

The same as in 2D-case: approximation by a pilot-model with linear V .
Again we estimate an error.

Theorem

Let µh ≥ 1 and (29) be fulfilled. Then for Schrödinger-Pauli operator (we
subtract µhf )

|Ft→µ−1h−1τ χ̄T (t)ΓxU| ≤ Cµ2h−
3
2 (33)

and the Tauberian remainder estimate is O(µh−
3
2 ).

Moreover,
|e(x , x , 0)− ēx(x , x , 0)| ≤ Cµh−

3
2 . (34)

Remark

As d = 2, 3 and µh ≥ 1 there are simple representations for U(x , y , t)
based on Hermite polynomials and simple formulae for ēx(x , x , 0).

All details again on [1].
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3D case

Reference

Victor Ivrii, Microlocal Analysis, Sharp Spectral Asymptotics and
Applications,
http://www.math.toronto.edu/ivrii/futurebook.pdf
Ch. 13 for local spectral asymptotics and Chapter 16 (sections
16.1–16.2, and 16.5–16.6) for pointwise spectral asymptotics.
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