

2D- and 3D-Magnetic Schrödinger Operator: Short Loops and Pointwise Spectral Asymptotics

Workshop "Spectral Gap in Dynamical Systems, Number Theory and PDEs", Peyresq, France, May 30–June 3, 2011

Victor Ivrii

Department of Mathematics, University of Toronto

June 1, 2011 - the Day when Internet died

Table of Contents

イロト イ団ト イヨト イヨト

Consider Magnetic Schrödinger Operator

$$H := h^2 D_1^2 + (h D_2 - \mu x_1)^2 + h^2 D_3^2 + V(x)$$
(1)

but the similar results hold for a more general operator

$$H := \sum_{j,k} \left(hD_j - \mu A_j(x) \right) g^{jk} \left(hD_k - \mu A_k(x) \right) + V(x) \tag{2}$$

provided

Magnetic intensity $\mathbf{F} = \nabla \times \mathbf{A}$ is disjoint from 0.

► < Ξ ►</p>

Consider Magnetic Schrödinger Operator

$$H := h^2 D_1^2 + (h D_2 - \mu x_1)^2 + h^2 D_3^2 + V(x)$$
(1)

but the similar results hold for a more general operator

$$H := \sum_{j,k} \left(hD_j - \mu A_j(x) \right) g^{jk} \left(hD_k - \mu A_k(x) \right) + V(x)$$
⁽²⁾

provided

Magnetic intensity $\mathbf{F} = \nabla \times \mathbf{A}$ is disjoint from 0.

Here $h \ll 1$ and $\mu \gg 1$ are semiclassical parameter and magnetic field intensity. (1) is a canonical form of such operator with Euclidean metrics and constant magnetic field.

We assume that this operator is self-adjoint. Let $E(\tau)$ be its spectral projector, $e(x, y, \tau)$ its Schwartz kernel and we are interested in pointwise spectral asymptotics

$$e(x,x, au)$$
 as $h o +0, \mu o +\infty.$ (3)

We assume that this operator is self-adjoint. Let $E(\tau)$ be its spectral projector, $e(x, y, \tau)$ its Schwartz kernel and we are interested in pointwise spectral asymptotics

$$e(x,x, au)$$
 as $h o +0, \mu o +\infty.$ (3)

Usually I studied local spectral asymptotics

$$\int e(x,x,\tau)\psi(x)\,dx \qquad \text{as} \quad h \to +0, \mu \to +\infty \tag{4}$$

with $\psi \in C_0^{\infty}$ because from it one can assemble an eigenvalue counting function given by the same expression with $\psi = 1$.

We assume that this operator is self-adjoint. Let $E(\tau)$ be its spectral projector, $e(x, y, \tau)$ its Schwartz kernel and we are interested in pointwise spectral asymptotics

$$e(x, x, \tau)$$
 as $h \to +0, \mu \to +\infty.$ (3)

Usually I studied local spectral asymptotics

$$\int e(x,x,\tau)\psi(x)\,dx \qquad \text{as} \quad h \to +0, \mu \to +\infty \tag{4}$$

with $\psi \in C_0^{\infty}$ because from it one can assemble an eigenvalue counting function given by the same expression with $\psi = 1$.

Remark

We take
$$|\tau| \leq c$$
 and often $\tau = 0$.

Simple scaling $x \to \mu x$, $h \to \mu h$, $\mu \to 1$ implies

$$e(x,x, au) = \mathcal{N}^{\mathsf{W}}(x, au) + O(\mu h^{1-d}) \quad \text{as} \quad \mu h \leq 1.$$
 (5)

where $\mathcal{N}^{W} = \text{const} (\tau - V)_{+}^{d/2}$ is a Weyl expression.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Simple scaling $x \to \mu x$, $h \to \mu h$, $\mu \to 1$ implies

$$e(x,x, au) = \mathcal{N}^{\mathsf{W}}(x, au) + O(\mu h^{1-d}) \quad \text{as} \quad \mu h \leq 1.$$
 (5)

where $\mathcal{N}^{W} = \text{const} (\tau - V)_{+}^{d/2}$ is a Weyl expression. Can we do better than this?

E 990

Simple scaling $x \to \mu x$, $h \to \mu h$, $\mu \to 1$ implies

$$e(x,x, au) = \mathcal{N}^{\mathsf{W}}(x, au) + O(\mu h^{1-d}) \quad \text{as} \quad \mu h \leq 1.$$
 (5)

where $\mathcal{N}^{W} = \operatorname{const} (\tau - V)_{+}^{d/2}$ is a Weyl expression. Can we do better than this? Generally in dimension 2 the answer is no: if we consider in \mathbb{R}^{2} operator (1) with V = 0 then it has pure point of infinite multiplicity spectrum consisting of Landau levels $(2j + 1)\mu h$, $j = 0, 1, \ldots$ and

$$e(x, x, \tau) = \mathcal{N}^{\mathsf{MW}}(x, \tau) := (2\pi)^{-1} \mu h^{-1} \sum_{j} \theta(\tau - V(x) - (2j+1)\mu h)$$
(6)

with Heaviside function θ .

Simple scaling $x \to \mu x$, $h \to \mu h$, $\mu \to 1$ implies

$$e(x,x, au) = \mathcal{N}^{\mathsf{W}}(x, au) + O(\mu h^{1-d}) \quad \text{as} \quad \mu h \leq 1.$$
 (5)

where $\mathcal{N}^{W} = \operatorname{const} (\tau - V)_{+}^{d/2}$ is a Weyl expression. Can we do better than this? Generally in dimension 2 the answer is no: if we consider in \mathbb{R}^{2} operator (1) with V = 0 then it has pure point of infinite multiplicity spectrum consisting of Landau levels $(2j + 1)\mu h$, $j = 0, 1, \ldots$ and

$$e(x, x, \tau) = \mathcal{N}^{\mathsf{MW}}(x, \tau) := (2\pi)^{-1} \mu h^{-1} \sum_{j} \theta(\tau - V(x) - (2j+1)\mu h)$$
(6)

with Heaviside function θ . As τ goes through Landau level it jumps by μh^{-1} .

= ~~~

(日) (同) (三) (三) (三)

Simple scaling $x \to \mu x$, $h \to \mu h$, $\mu \to 1$ implies

$$e(x,x, au) = \mathcal{N}^{\mathsf{W}}(x, au) + O(\mu h^{1-d}) \quad \text{as} \quad \mu h \leq 1.$$
 (5)

where $\mathcal{N}^{W} = \operatorname{const} (\tau - V)_{+}^{d/2}$ is a Weyl expression. Can we do better than this? Generally in dimension 2 the answer is no: if we consider in \mathbb{R}^{2} operator (1) with V = 0 then it has pure point of infinite multiplicity spectrum consisting of Landau levels $(2j + 1)\mu h$, $j = 0, 1, \ldots$ and

$$e(x, x, \tau) = \mathcal{N}^{\mathsf{MW}}(x, \tau) := (2\pi)^{-1} \mu h^{-1} \sum_{j} \theta(\tau - V(x) - (2j+1)\mu h)$$
(6)

with Heaviside function θ . As τ goes through Landau level it jumps by μh^{-1} . However under certain non-degeneracy assumptions remainder estimate could be much better and this is the subject of the talk.

We discuss 2D-case now

From the dynamical point of view a pilot-model operator with no electric field is bad because all classical trajectories are periodic with periods $\approx \mu^{-1}$ (they are circles with radii $\approx \mu^{-1}$ (as $\tau - V \approx 1$)).

We discuss 2D-case now

From the dynamical point of view a pilot-model operator with no electric field is bad because all classical trajectories are periodic with periods $\approx \mu^{-1}$ (they are circles with radii $\approx \mu^{-1}$ (as $\tau - V \approx 1$)). However let add constant electric field. Then Hamiltonian trajectories (their *x*-projections) are prolate cycloids

Figure: Drift is orthogonal to electric field and its speed is $\asymp \mu^{-1} \alpha$ where α is the electric intensity

< 回 > < 三 > < 三 >

Electric field breaks periodicity (we need to check that it is the case in the "quantum" sense) but assuming that our domain contains B(0,2) where operator is "good" and ψ is supported in B(0,1) we know that there are no periods $\leq \epsilon \mu$ so actually our remainder estimate in local spectral asymptotics $O(T^{-1}h^{-1})$ improves from $O(\mu h^{-1})$ to $O(\mu^{-1}h^{-1})$ as T improves from $\epsilon \mu^{-1}$ to $\epsilon \mu$.

Electric field breaks periodicity (we need to check that it is the case in the "quantum" sense) but assuming that our domain contains B(0,2) where operator is "good" and ψ is supported in B(0,1) we know that there are no periods $\leq \epsilon \mu$ so actually our remainder estimate in local spectral asymptotics $O(T^{-1}h^{-1})$ improves from $O(\mu h^{-1})$ to $O(\mu^{-1}h^{-1})$ as T improves from $\epsilon \mu^{-1}$ to $\epsilon \mu$.

Theorem (Old theorem)

As ∇V disjoint from 0

$$\int e(x,x,0)\psi(x)\,dx = \int \mathcal{N}^{\mathsf{MW}}(x,0)\psi(x)\,dx + O(\mu^{-1}h^{-1}) \qquad \mu h \le 1.$$
(7)

Further for $\mu h \ge 1$ remainder estimate is O(1) as we consider Schrödinger-Pauli operator (subtract $(2n + 1)\mu h$ from H) and the principal part is $\simeq \mu h^{-1}$.

But what about pointwise asymptotics?

There are new villains - loops when trajectory returns to the same point x but from the different direction:

and there are plenty of loops in our case - and many of them are short!

But we don't care about many self-intersections on a single trajectory: after $\pm 1,\ \pm 2,\ldots$ rotations

However there are plenty of trajectories looping in the given point x.

・ロト ・回ト ・ヨト ・

2D case

We consider a pilot-model with a constant electric field (i.e. linear V)

$$H = \bar{H} := h^2 D_1^2 + (h D_2 - \mu x_1)^2 + 2\alpha x_1$$
(8)

with $\alpha \asymp 1$. Results for general operators are similar.

Image: A image: A

2D case

We consider a pilot-model with a constant electric field (i.e. linear V)

$$H = \bar{H} := h^2 D_1^2 + (h D_2 - \mu x_1)^2 + 2\alpha x_1$$
(8)

with $\alpha \simeq 1$. Results for general operators are similar. We need to consider U(x, x, t) where U(x, y, t) is the Schwartz kernel for propagator $e^{ih^{-1}tH}$. If we rescale $x \mapsto \mu x$, $t \mapsto \mu t$ (and $T = \epsilon \mu^2$), $h \mapsto \hbar = \mu h$ we can write precisely

$$U(x, y, t) = (2\pi h)^{-1} \mu \int u(x_1, y_1; \eta, t) e^{ih^{-1}(x_2 - y_2)\eta} d\eta$$
(9)

with $u(x_1, y_1; \eta, t)$ the Schwartz kernel of $e^{i\hbar^{-1}ta}$ with 1D-harmonic oscillator

$$\mathbf{a} = \hbar^2 D_1^2 + (x_1 - \eta)^2 + 2\alpha \mu^{-1} x_1 = \underbrace{\hbar^2 D_1^2 + (x_1 - \eta + \alpha \mu^{-1})^2}_{\bar{\mathbf{a}}} + \mu^{-1} \alpha \underbrace{(2\eta - \alpha \mu^{-1})}_{\zeta(\eta)}.$$
 (10)

For the harmonic oscillator $\mathbf{b} = D^2 + x^2$ the Schwartz kernel of $e^{it\mathbf{b}}$ is known exactly and after calculations we arrive to

$$U(x, y, t) = i(4\pi)^{-1} \mu h^{-1} \csc(t) e^{i\hbar^{-1}\phi(x, y, t)}$$
(11)

(日) (同) (三) (三)

3

12 / 26

with

$$\phi := -\frac{1}{4}\cot(t)(x_1 - y_1)^2 + \frac{1}{2}(x_1 + y_1 + 2\alpha\mu^{-1})(x_2 - y_2 + 2t\alpha\mu^{-1}) - \frac{1}{4}\cot(t)(x_2 - y_2 + 2t\alpha\mu^{-1})^2 - t\alpha^2\mu^{-2} \quad (12)$$

For the harmonic oscillator $\mathbf{b} = D^2 + x^2$ the Schwartz kernel of $e^{it\mathbf{b}}$ is known exactly and after calculations we arrive to

$$U(x, y, t) = i(4\pi)^{-1} \mu h^{-1} \csc(t) e^{i\hbar^{-1}\phi(x, y, t)}$$
(11)

with

$$\phi := -\frac{1}{4}\cot(t)(x_1 - y_1)^2 + \frac{1}{2}(x_1 + y_1 + 2\alpha\mu^{-1})(x_2 - y_2 + 2t\alpha\mu^{-1}) - \frac{1}{4}\cot(t)(x_2 - y_2 + 2t\alpha\mu^{-1})^2 - t\alpha^2\mu^{-2}$$
(12)

and then

$$U(0,0,t) \equiv i(4\pi)^{-1} \mu h^{-1} \csc(t) e^{i\hbar^{-1}\bar{\phi}(t)}$$
(13)

with

$$\bar{\phi}(t) := t^2 \alpha^2 \mu^{-2} \cot(t) + \alpha^2 \mu^{-2} t.$$
(14)

3

It allows us to write an exact formula for

$$F_{t \to \mu^{-1} h^{-1} t} \bar{\chi}_{\tau}(t) U(0,0,t) dt = 2i(4\pi)^{-2} \mu h^{-1} \int \csc(t) e^{i\hbar^{-1}(\bar{\phi}(t) - \mu^{-2} t\tau)} \bar{\chi}_{\tau}(t) dt \quad (15)$$

 $(\bar{\chi} \in C_0^{\infty}([-1,1]), \ \bar{\chi}_T(t) = \bar{\chi}(t/T)$ and we can try to apply a stationary phase to it; then we get

$$t_k = -t_{-k}, \quad t_k \sim \pi k, \quad \sin(t_k) \sim \alpha \mu^{-1} \tau^{-\frac{1}{2}} \pi k$$
 (16)

13 / 26

and

Remark

The number of stationary points is $\sim 2\pi^{-1}|\alpha|^{-1}\mu\tau^{-\frac{1}{2}}$.

Remark

Stationary phase method works for all k only if $\mu \le h^{-\frac{1}{2}}$. As $h^{-\frac{1}{2}} \le \mu \le h^{-1}$ this method works only for $k : |k| \ge \mu^2 h$.

Remark

Stationary phase method works for all k only if $\mu \leq h^{-\frac{1}{2}}$. As $h^{-\frac{1}{2}} \leq \mu \leq h^{-1}$ this method works only for $k : |k| \geq \mu^2 h$.

Remark

Also it does not work well near "equator" (when trajectory at 0 is vertical).

Remark

Stationary phase method works for all k only if $\mu \leq h^{-\frac{1}{2}}$. As $h^{-\frac{1}{2}} \leq \mu \leq h^{-1}$ this method works only for $k : |k| \geq \mu^2 h$.

Remark

Also it does not work well near "equator" (when trajectory at 0 is vertical).

However one can prove

Theorem

For d = 2

$$|F_{t\to\mu^{-1}h^{-1}t}\bar{\chi}_{T}(t)U(0,0,t)| \le C\mu h^{-1} + C\mu^{\frac{5}{2}}h^{-\frac{1}{2}}.$$
 (17)

Here the main contribution into second term is delivered by points with $k \simeq \mu$. This estimate holds also for Schrödinger-Pauli operator as $\mu \ge h^{-1}$. This theorem holds also for general operator (1) as $|\nabla V| \simeq 1$.

Due to the standard Tauberian theory (with $T = \epsilon \mu^2$) the above theorem instantly implies:

Theorem

For d = 2

$$|e(0,0,\tau) - \underbrace{\mu^{-1}h^{-1}\int_{-\infty}^{\tau} \left(F_{t \to \mu^{-1}h^{-1}t}\bar{\chi}(t)U(0,0,t)\right)d\tau}_{Tauberian \ expression}| \leq C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}}.$$
 (18)

Note that the second term dominates as $\mu \ge h^{-\frac{1}{3}}$.

Now we need to calculate Tauberian expression.

Theorem

As $1 \le \mu \le h^{-rac{1}{2}}$

$$|e(x,x,0) - \mathcal{N}_{x}^{\mathsf{W}}(0)| \leq C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu^{2}h^{-\frac{1}{2}}$$
 (19)

< □ > < ---->

- 4 ≣ ▶

Now we need to calculate Tauberian expression.

Theorem

As $1 \le \mu \le h^{-\frac{1}{2}}$

$$|e(x,x,0) - \mathcal{N}_{x}^{\mathsf{W}}(0)| \le C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu^{2}h^{-\frac{1}{2}}$$
 (19)

16 / 26

Here \mathcal{N}^{W} is a standard Weyl expression (contribution of t = 0) and the last term estimates contributions of loops (and it is sharp!).

Now we need to calculate Tauberian expression.

Theorem

As $1 \le \mu \le h^{-\frac{1}{2}}$

$$|e(x,x,0) - \mathcal{N}_{x}^{\mathsf{W}}(0)| \leq C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu^{2}h^{-\frac{1}{2}}$$
 (19)

Here \mathcal{N}^{W} is a standard Weyl expression (contribution of t = 0) and the last term estimates contributions of loops (and it is sharp!). Note that it is the largest term for $\mu \ge h^{-\frac{1}{6}}$.

If we want a better remainder we must introduce a correction – contributions of loops which are calculated by a stationary phase method.

If we want a better remainder we must introduce a correction – contributions of loops which are calculated by a stationary phase method.

Theorem

 $As \ 1 \le \mu \le h^{-\frac{1}{2}} |e(x, x, 0) - (\mathcal{N}_{x}^{\mathsf{W}}(0) + \mathcal{N}_{x, \operatorname{corr}(r)}^{\mathsf{W}}(0))| \le C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu h^{-1}(\mu^{2}h)^{r+\frac{1}{2}} + C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + L\mu^{\frac{1}{2}}h^{-\frac{2}{3}} + L\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + L\mu^{\frac{1}{2}}h^{-\frac{1}$

If we want a better remainder we must introduce a correction – contributions of loops which are calculated by a stationary phase method.

Theorem

As
$$1 \le \mu \le h^{-\frac{1}{2}}$$

 $|e(x, x, 0) - (\mathcal{N}_{x}^{W}(0) + \mathcal{N}_{x, corr(r)}^{W}(0))| \le C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu h^{-1}(\mu^{2}h)^{r+\frac{1}{2}} + C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + L\mu^{\frac{1}{3}}h^{-\frac{2}{3}} + L$

Here we take r terms in the stationary phase method but the remainder estimate is good only as $\mu \leq h^{\delta - \frac{1}{2}}$ and we need to take $r = r(\delta)$ terms to eliminate the third term in the right-hand expression.

If we want a better remainder we must introduce a correction – contributions of loops which are calculated by a stationary phase method.

Theorem

As
$$1 \le \mu \le h^{-\frac{1}{2}}$$

 $|e(x, x, 0) - (\mathcal{N}_{x}^{W}(0) + \mathcal{N}_{x, corr(r)}^{W}(0))| \le C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu h^{-1}(\mu^{2}h)^{r+\frac{1}{2}} + C\mu^{-1}h^{-1} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + L\mu^{\frac{1}{3}}h^{-\frac{2}{3}} + L$

Here we take r terms in the stationary phase method but the remainder estimate is good only as $\mu \leq h^{\delta - \frac{1}{2}}$ and we need to take $r = r(\delta)$ terms to eliminate the third term in the right-hand expression. The last term in the right-hand expression is due to the "equator".

What to do as $\mu \geq h^{\delta - \frac{1}{2}}$?

As $\mu \ge h^{-\frac{1}{3}}$ we just get expression for pilot-model as "a special function" (withan explicit expression) and for a general operators we get

イロト 不得下 イヨト イヨト

What to do as $\mu \ge h^{\delta - \frac{1}{2}}$?

As $\mu \ge h^{-\frac{1}{3}}$ we just get expression for pilot-model as "a special function" (withan explicit expression) and for a general operators we get

Theorem

(*i*) As $\mu \ge h^{-\frac{1}{3}}$

$$|e(x, x, \tau) - \bar{e}_{x}(x, x, \tau)| \leq C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\begin{cases} h^{-1}\mu^{\frac{1}{2}} & \text{as } \mu \leq h^{-\frac{1}{2}}, \\ \mu^{-\frac{1}{2}}h^{-\frac{3}{2}} & \text{as } \mu \geq h^{-\frac{1}{2}} \end{cases}$$
(21)

where $\bar{e}_x(x, x, \tau)$ is calculated for a pilot-model approximating general operator at point x..

What to do as $\mu \geq h^{\delta - \frac{1}{2}}$?

As $\mu \ge h^{-\frac{1}{3}}$ we just get expression for pilot-model as "a special function" (withan explicit expression) and for a general operators we get

Theorem

(*i*) As $\mu \ge h^{-\frac{1}{3}}$

$$|e(x, x, \tau) - \bar{e}_{x}(x, x, \tau)| \leq C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\begin{cases} h^{-1}\mu^{\frac{1}{2}} & \text{as } \mu \leq h^{-\frac{1}{2}}, \\ \mu^{-\frac{1}{2}}h^{-\frac{3}{2}} & \text{as } \mu \geq h^{-\frac{1}{2}} \end{cases}$$
(21)

where $\bar{e}_x(x, x, \tau)$ is calculated for a pilot-model approximating general operator at point x.. As $\mu \ge h^{-1}$ we consider magnetic Schrödinger-Pauli operator and can skip the last term.

What to do as $\mu \ge h^{\delta - \frac{1}{2}}$?

As $\mu \ge h^{-\frac{1}{3}}$ we just get expression for pilot-model as "a special function" (withan explicit expression) and for a general operators we get

Theorem

(i) As $\mu > h^{-\frac{1}{3}}$

$$|e(x, x, \tau) - \bar{e}_{x}(x, x, \tau)| \leq C\mu^{\frac{1}{2}}h^{-\frac{1}{2}} + C\begin{cases} h^{-1}\mu^{\frac{1}{2}} & \text{as } \mu \leq h^{-\frac{1}{2}}, \\ \mu^{-\frac{1}{2}}h^{-\frac{3}{2}} & \text{as } \mu \geq h^{-\frac{1}{2}} \end{cases}$$
(21)

where $\bar{e}_{x}(x, x, \tau)$ is calculated for a pilot-model approximating general operator at point x.. As $\mu \ge h^{-1}$ we consider magnetic Schrödinger-Pauli operator and can skip the last term.

For results as $h^{-\frac{1}{3}} \le \mu \le h^{-1}$ see main text [1] for sharper asymptotics but they include some correction. = 900

Victor Ivrii (Math., Toronto)

Magnetic Schrödinger Operator: Short Loops

June 1, 2011 18 / 26

Consider now 3D case. It is related to 2D case but is drastically different.

Image: A math a math

Consider now 3D case. It is related to 2D case but is drastically different. Dynamically it is because there are magnetic lines (integral curves of $\mathbf{F} = \nabla \times \mathbf{A}$) and trajectories are winding around them

They have double effect.

<ロ> (日) (日) (日) (日) (日)

They have double effect. First, because speed along magnetic lines could be ≈ 1 , $T \approx 1$ and $T \approx \mu$ before/after rescaling. So, our best possible remainder estimate could be $O(h^{-2})$ as $\mu h \leq 1$ and $O(\mu h^{-1})$ as $\mu h \geq 1$ for Schrödinger-Pauli operator. Second, movement along magnetic lines usually breaks periodicity:

Theorem (Old theorem)

$$|\int e(x,x,0)\psi(x)\,dx - \int \mathcal{N}^{\mathsf{MW}}(x,0)\psi(x)\,dx| \le Ch^{-2} + C\mu h^{-1-\delta} \qquad \mu h \le 1.$$
(22)

where

$$\mathcal{N}^{\mathsf{MW}} := \frac{1}{4\pi}^2 \sum_{j} \left(\tau - (2j+1)\mu hf - V \right)_{+}^{\frac{1}{2}} f \mu h^{-2}, \tag{23}$$

A D b 4 A b

and under very weak non-degeneration assumption one can take $\delta = 0$.

Theorem (No non-degeneracy assumption)

$$|e(x,x,0) - \mathcal{N}^{\mathsf{W}}(x,0)| \leq Ch^{-2} + C\mu^{rac{3}{2}}h^{-rac{3}{2}}.$$

(24)

21 / 26

In particular, as $\mu \leq h^{-\frac{1}{3}}$ remainder estimate is $O(h^{-2})$.

Consider a pilot-model in \mathbb{R}^3

$$H = \bar{H} := h^2 D_1^2 + (h D_2 - \mu x_1)^2 + h^2 D_3^2 + 2\alpha x_1 + 2\beta x_3.$$
 (25)

イロト イポト イヨト イヨト

Consider a pilot-model in \mathbb{R}^3

$$H = \bar{H} := h^2 D_1^2 + (h D_2 - \mu x_1)^2 + h^2 D_3^2 + 2\alpha x_1 + 2\beta x_3.$$
 (25)

Then

$$U_{(3)}(x, y, t) = U_{(2)}(x', y', t)U_{(1)}(x_3, y_3, t)$$
(26)

where $U_{(2)}$ is former U, $x' = (x_1, x_2)$ etc and $U_{(1)}$ is a constructed for 1D-operator $h^2D_3^2 + 2\beta x_3$:

$$U_{(1)}(x_3, y_3, t) = \frac{1}{2} (2\pi h t)^{-\frac{1}{2}} \exp\left(ih^{-1} \left(\beta t(x_3 + y_3) + \frac{1}{8}t^{-1}(x_3 - y_3)^2 - \frac{2}{3}\beta^2 t^3\right)\right); \quad (27)$$

in particular

$$U_{(1)}(x_3, x_3, t) = \frac{1}{2} (2\pi h |t|)^{-\frac{1}{2}} \exp\left(ih^{-1} \left(2\beta t x_3 - \frac{2}{3}\beta^2 t^3\right)\right).$$
(28)

3

In this case we have an explicit formula and we have a described above 2D-movement and (possibly looping) 1D-movement.

→ Ξ →

A D b 4 A

In this case we have an explicit formula and we have a described above 2D-movement and (possibly looping) 1D-movement.

Then playing with oscillatory integrals we prove for the pilot-model (but factor $|t|^{-\frac{1}{2}}$ plays a crucial role) and generalize for general operator we get

Theorem

Let $\mu h \leq 1$ and

$$|\nabla_{\perp \mathbf{F}} V/F| \asymp 1. \tag{29}$$

Then

$$|F_{t \to \mu^{-1} h^{-1} \tau} \bar{\chi}_{\mathcal{T}}(t) \Gamma_{x} \mathsf{U}| \le C \mu h^{-2} + C \mu^{\frac{5}{2}} h^{-1} (1 + |\log \mu h)|)$$
(30)

and the Tauberian remainder estimate is $O(h^{-2} + \mu^{\frac{3}{2}}h^{-1}(1 + |\log \mu h|))$.

Theorem

As
$$\mu \leq h^{-\frac{1}{2}}$$
 under non-degeneracy condition (29)
 $|e(x, x, 0) - \mathcal{N}_{x}^{W}(x, x, 0)| \leq Ch^{-2} + C\mu^{\frac{5}{2}}h^{-1}$ (31)
and
 $|e(x, x, 0) - \mathcal{N}_{x}^{W}(x, x, 0) - \mathcal{N}_{x, corr(r)}^{W}| \leq Ch^{-2} + C\mu^{\frac{5}{2}}h^{-1}(\mu^{2}h)^{r}.$ (32)

< □ > < ---->

What to do as $\mu \ge h^{\delta - \frac{1}{2}}$?

The same as in 2D-case: approximation by a pilot-model with linear V. Again we estimate an error.

What to do as $\mu \geq h^{\delta - \frac{1}{2}}$?

The same as in 2D-case: approximation by a pilot-model with linear V. Again we estimate an error.

Theorem

Let $\mu h \ge 1$ and (29) be fulfilled. Then for Schrödinger-Pauli operator (we subtract μhf)

$$F_{t \to \mu^{-1} h^{-1} \tau} \bar{\chi}_{\tau}(t) \Gamma_x \mathsf{U}| \le C \mu^2 h^{-\frac{3}{2}}$$
(33)

25 / 26

and the Tauberian remainder estimate is $O(\mu h^{-\frac{3}{2}})$.

What to do as $\mu \geq h^{\delta - \frac{1}{2}}$?

The same as in 2D-case: approximation by a pilot-model with linear V. Again we estimate an error.

Theorem

Let $\mu h \ge 1$ and (29) be fulfilled. Then for Schrödinger-Pauli operator (we subtract μhf)

$$|F_{t \to \mu^{-1} h^{-1} \tau} \bar{\chi}_T(t) \Gamma_x \mathsf{U}| \le C \mu^2 h^{-\frac{3}{2}}$$
(33)

and the Tauberian remainder estimate is $O(\mu h^{-\frac{3}{2}})$. Moreover.

$$|e(x,x,0) - \bar{e}_x(x,x,0)| \le C\mu h^{-\frac{3}{2}}.$$
 (34)

What to do as $\mu \ge h^{\delta - \frac{1}{2}}$?

The same as in 2D-case: approximation by a pilot-model with linear V. Again we estimate an error.

Theorem

Let $\mu h \ge 1$ and (29) be fulfilled. Then for Schrödinger-Pauli operator (we subtract μhf)

$$|F_{t \to \mu^{-1} h^{-1} \tau} \bar{\chi}_{\mathcal{T}}(t) \Gamma_x \mathsf{U}| \le C \mu^2 h^{-\frac{3}{2}}$$
(33)

and the Tauberian remainder estimate is $O(\mu h^{-\frac{3}{2}})$. Moreover,

$$|e(x,x,0) - \bar{e}_x(x,x,0)| \le C\mu h^{-\frac{3}{2}}.$$
 (34)

Remark

As d = 2,3 and $\mu h \ge 1$ there are simple representations for U(x, y, t) based on Hermite polynomials and simple formulae for $\bar{e}_x(x, x, 0)$.

All details again on [1].

Victor Ivrii (Math., Toronto) Magnetic Schrödinger Operator: Short Loops

June 1, 2011 25 / 26

Reference

Victor Ivrii, Microlocal Analysis, Sharp Spectral Asymptotics and Applications, http://www.math.toronto.edu/ivrii/futurebook.pdf Ch. 13 for local spectral asymptotics and Chapter 16 (sections 16.1–16.2, and 16.5–16.6) for pointwise spectral asymptotics.