CRM Workshop
on Spectral Geometry

Sharp Spectral Asymptotics for Magnetic
Schrödinger Operator

Victor Ivrii,
Department of Mathematics,
University of Toronto

March 4, 2004
1 Problem and Results

1.1 Preface

This talk presents much newer results. Important parts of the research were done in July 2002 when I was visiting Université Paris-Nord and in March 2003 during my stay at Banff International Research Station.

The results are summarized in

Sharp spectral asymptotics for operators with irregular coefficients. III. Schrödinger operator with a strong magnetic field. – Submitted to Comm. Part. Diff. Equats;
Sharp Spectral Asymptotics for Operators with Irregular Coefficients. IV. Multidimensional Schrödinger operator with a strong magnetic field.
Full-rank case. – Finished;

Sharp Spectral Asymptotics for Operators with Irregular Coefficients. V. Multidimensional Schrödinger operator with a strong magnetic field.
Not-Full-rank case. – In Process.

This talk is basically a survey of the results of these papers.
1.2 Operator

Either

\[
\sum_j P_j^2 + V(x), \quad P_j = \hbar D_j - \mu A_j(x)
\] \hspace{1cm} (1)

with linear functions \(A_j(x) \) (the standard Schrödinger operator with the constant magnetic field), or more general
1.2 Operator

Either

\[\sum_j P_j^2 + V(x), \quad P_j = \hbar D_j - \mu A_j(x) \] (1)

with linear functions \(A_j(x) \) (the standard Schrödinger operator with the constant magnetic field), or more general

\[\sum_{j,k} P_j g^{jk}(x) P_k + V(x), \quad P_j = \hbar D_j - \mu A_j(x) \] (2)

with general Riemannian metrics and vector potential \((A_1, \ldots, A_d)\).
In dimensions $d = 2, 3$ the second case is much more difficult technically, but in dimensions $d \geq 4$ results are very different too. I am talking only about (1).
1.3 Problem

To study sharp spectral asymptotics as $h \to +0$ and $\mu \to +\infty$. We call h Plank’s constant and μ coupling constant.
1.3 Problem

To study **sharp** spectral asymptotics as $h \to +0$ and $\mu \to +\infty$. We call h Plank’s constant and μ coupling constant. There are two essentially different cases: $\mu h \ll 1$ and $\mu h \gg 1$ and intermediate case $\mu h \asymp 1$.
1.3 Problem

To study sharp spectral asymptotics as $h \to +0$ and $\mu \to +\infty$. We call h Plank's constant and μ coupling constant. There are two essentially different cases: $\mu h \ll 1$ and $\mu h \gg 1$ and intermediate case $\mu h \simeq 1$.

Another classification: rank $F = d$ and rank $F < d$ where $F = (F_{jk})$, $F_{jk} = \partial_k A_j - \partial_j A_k$, is a matrix intensity of magnetic field.
1.3 Problem

To study sharp spectral asymptotics as $h \to +0$ and $\mu \to +\infty$.

We call h Plank’s constant and μ coupling constant.

There are two essentially different cases: $\mu h \ll 1$ and $\mu h \gg 1$ and intermediate case $\mu h \simeq 1$.

Another classification: $\text{rank } F = d$ and $\text{rank } F < d$ where $F = (F_{jk})$, $F_{jk} = \partial_k A_j - \partial_j A_k$, is a matrix intensity of magnetic field.

If $d = 2$ then F is reduced to a (pseudo)scalar, and only its absolute value is important. If $d = 3$ then F is reduced to a (pseudo)vector, and only its length is important. But for $d \geq 4$ the whole structure of F is important.
1.4 Special case $V = \text{const in } \mathbb{R}^d$

Then everything is explicit: in appropriate coordinates operator is

$$H = \sum_{1 \leq j \leq r} (h^2 D_j^2 + (hD_{j+r} - \mu f_j x_j)^2) + \sum_{1 \leq k \leq q} h^2 D_{2r+k}^2 \tag{3}$$

where $\text{rank } \mathcal{F}^r = 2r$ and $q = d - 2r$.

1.4 Special case $V = \text{const in } \mathbb{R}^d$

Then everything is explicit: in appropriate coordinates operator is

$$H = \sum_{1 \leq j \leq r} (h^2 D_j^2 + (h D_{j+r} - \mu f_j x_j)^2) + \sum_{1 \leq k \leq q} h^2 D_{2r+k}^2$$

where $\text{rank } F^r = 2r$ and $q = d - 2r$. Then h-Fourier transform with respect to (x_{r+1}, \ldots, x_d) transforms it into

$$\sum_{1 \leq j \leq r} (h^2 D_j^2 + (\xi_{j+1} - \mu f_j x_j)^2) + \sum_{1 \leq k \leq q} \xi_{2r+k}^2$$
1.4 Special case $V = \text{const in } \mathbb{R}^d$

Then everything is explicit: in appropriate coordinates operator is

$$H = \sum_{1 \leq j \leq r} \left(h^2 D_j^2 + (hD_{j+r} - \mu f_j x_j)^2 \right) + \sum_{1 \leq k \leq q} h^2 D_{2r+k}^2$$

where $\text{rank } F^r = 2r$ and $q = d - 2r$. Then h-Fourier transform with respect to (x_{r+1}, \ldots, x_d) transforms it into

$$\sum_{1 \leq j \leq r} \left(h^2 D_j^2 + (\xi_{2j+1} - \mu f_j x_j)^2 \right) + \sum_{1 \leq k \leq q} \xi_{2r+k}^2;$$

changing variables $x_j \mapsto x_j - \mu^{-1} \xi_{2j+1}$ ($j = 1, \ldots, r$) we get

$$\sum_{1 \leq j \leq r} \left(h^2 D_j^2 + \mu^2 f_j^2 x_j^2 \right) + \sum_{1 \leq k \leq q} \xi_{2r+k}^2$$
and then for $q = 0$ operator has pure point spectrum of infinite multiplicity and for $q \geq 1$ it has continuous spectrum.
and then for $q = 0$ operator has pure point spectrum of infinite multiplicity and for $q \geq 1$ it has continuous spectrum.

In all these cases

$$
e(x, x, \tau) = E_{d,r}^{MW}(\tau) =$$

$$
\omega_q(2\pi)^{-q} \sum_{\alpha \in \mathbb{Z}^+} \left(\tau - \sum_j (2\alpha_j + 1)f_j \mu h - V \right)^{\frac{q}{2}} \times
$$

$$
\mu^r h^{-d+r} f_1 \cdots f_r \quad (5)
$$

where $e(x, y, \tau)$ is the Schwartz’ kernel of the spectral projector and $\pm i f_1, \ldots, \pm i f_r$ are eigenvalues of F, $f_j > 0$.
Note that the the number of terms is \(\asymp (\mu h)^{-r} \) and
\[
E_{d,r}^{\text{MW}}(\tau) \asymp h^{-d} \quad \text{as} \quad \mu h \leq 1, \quad \tau - V \asymp 1 \quad \text{and the number of terms is} \quad \asymp 1 \quad \text{and} \quad E_{d,r}^{\text{MW}}(\tau) \asymp \mu^r h^{r-d} \quad \text{as} \quad \mu h \geq 1 \quad \text{and} \quad \tau - V - \sum_j f_j \mu h \asymp 1.
\]
Note that the number of terms is \(\asymp (\mu h)^{-r} \) and

\[
E_{d,r}^{\text{MW}}(\tau) \asymp h^{-d} \quad \text{as } \mu h \leq 1, \quad \tau - V \asymp 1 \quad \text{and the number of terms is}
\]

\(\asymp 1 \) and \(E_{d,r}^{\text{MW}}(\tau) \asymp \mu^r h^{r-d} \) as \(\mu h \geq 1 \) and \(\tau - V - \sum_j f_j \mu h \asymp 1 \).

Also note that as \(\mu h \to +0 \) the \(r \)-dimensional Riemann sum becomes an integral and we get a standard Weyl expression:

\[
E_{d,r}^{\text{W}} = \omega_d (2\pi)^{-d} h^{-d} (\tau - V)^{\frac{d}{2}}. \quad (6)
\]
1.5 Classical Dynamics in Special Case

(on some finite energy level):
1.5 Classical Dynamics in Special Case

(on some finite energy level):

- as \(d = 2 \) particles move along circles of the radii \(\propto \mu^{-1} \);
1.5 Classical Dynamics in Special Case

(on some finite energy level):
- as $d = 2$ particles move along circles of the radii $\sim \mu^{-1}$; for rank $F = d$ trajectories are more complicated by they stay in $C\mu^{-1}$-vicinities of their origins.
1.5 Classical Dynamics in Special Case

(on some finite energy level):

- as $d = 2$ particles move along circles of the radii $\asymp \mu^{-1}$; for rank $F = d$ trajectories are more complicated by they stay in $C\mu^{-1}$-vicinities of their origins.

- as $d = 3$ particles move along spirals and similar happens for rank $F < d$.

1.5 Classical Dynamics in Special Case

(on some finite energy level):

- as $d = 2$ particles move along circles of the radii $\propto \mu^{-1}$; for rank $F = d$ trajectories are more complicated by they stay in $C\mu^{-1}$-vicinities of their origins.

- as $d = 3$ particles move along spirals and similar happens for rank $F < d$.

So, we see big difference between full- and not-full-rank cases and more subtle difference between $d = 2, 3$ and $d \geq 4$.
1.6 Problem

Find asymptotics of $\int \psi(x)e(x, x, \tau) \, dx$ as $h \to +0$, $\mu \to +\infty$ where we assume that operator is self-adjoint and $\psi(x)$ is a cut-off function in the ball $B(0, 1)$.
1.6 Problem

Find asymptotics of $\int \psi(x) e(x, x, \tau) \, dx$ as $h \to +0, \mu \to +\infty$ where we assume that operator is self-adjoint and $\psi(x)$ is a cut-off function in the ball $B(0, 1)$.

Actually, $e(x, y, \tau)$ are Schwartz’ kernel of two framing approximations \tilde{H}^\pm of our original operator H, but the difference between principal parts of asymptotics for \tilde{H}^\pm does not exceed announced remainder estimate.
1.7 What has been known?

In smooth case sharp spectral asymptotics were established by V. Ivrii as $d = 2, 3$ for general operator (2).
1.7 What has been known?

In smooth case sharp spectral asymptotics were established by V.Ivrii as $d = 2, 3$ for general operator (2).

As rank $F = d \geq 4$ M.Dimassi established sharp spectral asymptotics as $\mu h \gg 1$.
1.7 What has been known?

In smooth case sharp spectral asymptotics were established by V.Ivrii as $d = 2, 3$ for general operator (2).

As $\text{rank } F = d \geq 4$ M.Dimassi established sharp spectral asymptotics as $\mu \hbar \gg 1$.

In the general case G.Raikov got asymptotics but without any remainder estimate.
1.8 Standard results rescaled

Standard results are results as $\mu = 1$. Then the principal part is $\asymp h^{-d}$ and the remainder estimate is $O(h^{1-d})$.
1.8 Standard results rescaled

Standard results are results as $\mu = 1$. Then the principal part is $\asymp h^{-d}$ and the remainder estimate is $O(h^{1-d})$.

Changing variables $x \mapsto \mu x$ we arrive to standard situation with $h \mapsto \mu h$ and assuming that $\mu h \ll 1$ we get principal part $\asymp (\mu h)^{-d}\mu^d = h^{-d}$ and the remainder estimate $O((\mu h)^{1-d}\mu^d) = O(\mu h^{1-d})$.
1.8 Standard results rescaled

Standard results are results as $\mu = 1$. Then the principal part is $\asymp h^{-d}$ and the remainder estimate is $O(h^{1-d})$.

Changing variables $x \mapsto \mu x$ we arrive to standard situation with $h \mapsto \mu h$ and assuming that $\mu h \ll 1$ we get principal part $\asymp (\mu h)^{-d} \mu^d = h^{-d}$ and the remainder estimate $O((\mu h)^{1-d} \mu^d) = O(\mu h^{1-d})$.

These results are not sharp but the standard approach is very useful when magnetic field is not strong.
1.9 Classical Dynamics (again)

Since for $\mu h \ll 1$ classical dynamics describes well quantum dynamics i.e. dynamics of $e^{ih^{-1}tH}$, classical dynamics is important to understand spectral asymptotics.
Full-Rank case

As \(d = 2 \) trajectories are perturbed small circles (of radii \(\approx \mu^{-1} \)) drifting with the speed \(\leq C\mu^{-1} \) along level lines of \(V \) (so, in direction orthogonal to electric field):
Full-Rank case

As $d = 2$ trajectories are perturbed small circles (of radii $\approx \mu^{-1}$) drifting with the speed $\leq C\mu^{-1}$ along level lines of V (so, in direction orthogonal to electric field):

Here electric field is constant:

and similar picture holds for variable electric field.
Full-Rank case

As \(d = 2 \) trajectories are perturbed small circles (of radii \(\approx \mu^{-1} \)) drifting with the speed \(\leq C\mu^{-1} \) along level lines of \(V \) (so, in direction orthogonal to electric field):

Here electric field is constant:

![Diagram](image)

and similar picture holds for variable electric field.

As \(d = 2r \) trajectories are perturbed small orbits (described above; of radii \(\approx \mu^{-1} \)) drifting with the speed \(\leq C\mu^{-1} \) along trajectories of \(\frac{d}{dt} x_j = \sum_k \Phi^{jk} \partial_k V \) where \((\Phi^{jk}) = (F_{jk}^{-1}) \).
So, we can follow these trajectories until time $T_1 = \epsilon \mu$ and then we hope that the Tauberian methods will give us remainder estimate $O(\mu^{-1} h^{1-d})$.
Basically this is a correct guess (for sufficiently smooth V and $\mu h \leq 1$) but we will need nondegeneracy condition

$$|\nabla V| \geq \epsilon.$$ (7)
Basically this is a correct guess (for sufficiently smooth V and $\mu h \leq 1$) but we will need nondegeneracy condition

$$|\nabla V| \geq \epsilon.$$ \hspace{1cm} (7)

The simplest explanation is that in the special case $\text{rank } F = d$, \mathbb{R}^d, $V = \text{const}$, $\int E^{MW} \psi(x)(x, \tau) \, dx$ jumps by $\simeq \mu h^{1-d}$ when τ passes through Landau levels $V + \sum (2\alpha_j + 1)f_j\mu h$ and this is the worst case scenario!
Not-Full-Rank case

In this case major movement is along free variables $x_{\text{free}} = (x_{2r+1}, \ldots, x_d)$ and its speed is of magnitude $|\xi_{\text{free}}|$.

- Normal Helix along z
- Electric Field along y
Then we can follow trajectories until time $T_1 = \epsilon$ and we hope that the Tauberian methods will give us remainder estimate $O(h^{1-d})$.
Then we can follow trajectories until time $T_1 = \epsilon$ and we hope that the Tauberian methods will give us remainder estimate $O(h^{1-d})$.

Again, basically this is a correct guess but we need some smoothness and to some degree we need (7).
Super-Strong Magnetic Field

Case $\mu h \geq 1$ is different and we discuss it later. However, the answer is essentially the same: while the principal part of asymptotics is $\asymp \mu^r h^{-d+r}$, the remainder estimate is (under proper conditions) $O(\mu^{r-1} h^{1-d+r})$ in full-rank case and $O(\mu^r h^{1-d+r})$ in non-full-rank case,
Super-Strong Magnetic Field

Case $\mu h \geq 1$ is different and we discuss it later. However, the answer is essentially the same: while the principal part of asymptotics is $\asymp \mu^r h^{-d+r}$, the remainder estimate is (under proper conditions) $O(\mu^{r-1} h^{1-d+r})$ in full-rank case and $O(\mu^r h^{1-d+r})$ in non-full-rank case, thus gaining factors $\mu^{-1}h$ and h respectively.
2 Weak Magnetic Field

2.1 Full-Rank case

So, let us consider operator (1) and make ε-approximation. Error in V is $O(\varepsilon^l |\log \varepsilon|^\sigma)$ provided $V \in C^{l,\sigma}$
2 Weak Magnetic Field

2.1 Full-Rank case

So, let us consider operator (1) and make ε-approximation. Error in V is $O(\varepsilon^l \log \varepsilon |\sigma|$) provided $V \in C^{l,\sigma}$. \(^a\)

\(^a\) $V \in C^{l,\sigma}$ means that the derivatives of order $\lfloor l \rfloor$ of V are continuous for continuity modulus $\varpi(t) = t^{l-\lfloor l \rfloor} |\log t|^{-\sigma}$ (unless $l \in \mathbb{Z}$, $\sigma < 0$ when definition is obviously modified).
2 Weak Magnetic Field

2.1 Full-Rank case

So, let us consider operator (1) and make ε-approximation. Error in V is $O(\varepsilon^l | \log \varepsilon | ^\sigma)$ provided $V \in C^{l,\sigma}$.

Approximation error in Weyl expression is of magnitude $O(\varepsilon^l | \log \varepsilon | ^\sigma h^{-d})$.

\footnote{$V \in C^{l,\sigma}$ means that the derivatives of order $[l]$ of V are continuous for continuity modulus $\omega(t) = t^{l-[l]} | \log t | ^{-\sigma}$ (unless $l \in \mathbb{Z}$, $\sigma < 0$ when definition is obviously modified).}
Now, consider evolution of $e^{i\hbar^{-1}tH}$ until time T_0. To do it one should note first that

$$[P_j, P_k] = i\mu\hbar F_{jk}, \quad [P_j, x_k] = -i\hbar \delta_{jk}$$ \hspace{1cm} (8)

and introduce new variables $X_j = x_j - \mu^{-1} \sum \Phi^{jk} P_k$ s.t.

$$[P_j, X_k] = 0, \quad [X_j, X_k] = i\mu^{-1} \hbar \Phi^{jk}.$$ \hspace{1cm} (9)
Now, consider evolution of $e^{i\hbar^{-1}tH}$ until time T_0. To do it one should note first that

$$[P_j, P_k] = i\mu \hbar F_{jk}, \quad [P_j, x_k] = -i\hbar \delta_{jk}$$

and introduce new variables $X_j = x_j - \mu^{-1} \sum \Phi^{jk} P_k$ s.t.

$$[P_j, X_k] = 0, \quad [X_j, X_k] = i\mu^{-1} \hbar \Phi^{jk}. \quad (9)$$

They evolve with the speed $O(\mu^{-1})$ in the classical propagation and for time T drift is $\asymp \mu^{-1} T$ under condition (7).
This statement could be done and justified in quantum sense too, provided we satisfy logarithmic uncertainty principle:

\[\varepsilon \times \mu^{-1}T \geq C\mu^{-1}h|\log h|. \]

(10)
This statement could be done and justified in quantum sense too, provided we satisfy logarithmic uncertainty principle:

\[
\epsilon \times \mu^{-1} T \geq C \mu^{-1} h |\log h|. \tag{10}
\]

This would mean that trace of \(\phi(hD_t)e^{ih^{-1}tH} \) will be negligible for \(T \leq |t| \leq T_1 = \epsilon \mu \) (\(\phi \) is supported in small vicinity of 0; we make cut-off on energies). It happens because singularities leave the diagonal. I remind that \(T_1 \) is a time until which we can follow evolution.
Remarks. (i) Why two scales in X? – Because of (9) these variables are self-dual; also $\mu^{-1} \hbar$ is semiclassical constant now.
Remarks. (i) Why two scales in X? – Because of (9) these variables are self-dual; also $\mu^{-1}h$ is semiclassical constant now.

(ii) Why not $\varepsilon \times \varepsilon \geq C\mu^{-1}h|\log h|$? – Because we manage to avoid this in our proof based on energy estimates.
Remarks. (i) Why two scales in X? – Because of (9) these variables are self-dual; also $\mu^{-1}h$ is semiclassical constant now.

(ii) Why not $\varepsilon \times \varepsilon \geq C\mu^{-1}h|\log h|$? – Because we manage to avoid this in our proof based on energy estimates.

(iii) Why not $\mu^{-1}T^{-1}T \geq C\mu^{-1}h|\log h|$? – Because we need a shift just in one variable.
Now back to standard results rescaled. Consider evolution rather than asymptotics. In standard situation we could follow evolution until time $T_{\text{standard}0} = \epsilon$.
Now back to standard results rescaled. Consider evolution rather than asymptotics. In standard situation we could follow evolution until time $T_{\text{standard}0} = \epsilon$. The reduction to standard situation is based on $x \mapsto \mu x$, $h \mapsto \mu h$ and therefore $t \mapsto \mu t$. Going back $T_{\text{standard}0} \mapsto T_0 = \epsilon \mu^{-1}$.
Now back to standard results rescaled. Consider evolution rather than asymptotics. In standard situation we could follow evolution until time $T_{\text{standard}0} = \epsilon$. The reduction to standard situation is based on $x \mapsto \mu x$, $h \mapsto \mu h$ and therefore $t \mapsto \mu t$. Going back $T_{\text{standard}0} \mapsto T_0 = \epsilon \mu^{-1}$.

So, until time T_0 standard theory is applicable.
Now back to standard results rescaled. Consider evolution rather than asymptotics. In standard situation we could follow evolution until time $T_{\text{standard}} = 0 = \epsilon$. The reduction to standard situation is based on $x \mapsto \mu x$, $h \mapsto \mu h$ and therefore $t \mapsto \mu t$. Going back $T_{\text{standard}} = 0 = \epsilon \mu^{-1}$.

So, until time T_0 standard theory is applicable. To connect standards results rescaled and arguments above T_0 should satisfy (10):

$$\epsilon \times \mu^{-1} T_0 \geq C \mu^{-1} h |\log h|$$

(10)
Now back to standard results rescaled. Consider evolution rather than asymptotics. In standard situation we could follow evolution until time $T_{\text{standard}} = \epsilon$. The reduction to standard situation is based on $x \mapsto \mu x$, $h \mapsto \mu h$ and therefore $t \mapsto \mu t$. Going back $T_{\text{standard}} \mapsto T = \epsilon \mu^{-1}$.

So, until time T_0 standard theory is applicable. To connect standards results rescaled and arguments above T_0 should satisfy (10):

$$\epsilon \times \mu^{-1} T_0 \geq C \mu^{-1} h | \log h|$$

(10)

or

$$\epsilon = C \mu h | \log h|.$$ \hspace{1cm} \text{(11)}

We took the smallest ϵ.
Then everything going well and we get asymptotics with remainder estimate

\[C \mu^{-1} h^{1-d} + C(\mu h | \log h|)^l | \log h|^{-\sigma} h^{-d} \]
Then everything going well and we get asymptotics with remainder estimate

$$C \mu^{-1} h^{1-d} + C (\mu h | \log h |)^l | \log h |^{-\sigma} h^{-d}$$

where the first term is a correct remainder estimate.
Then everything going well and we get asymptotics with remainder estimate

\[C \mu^{-1} h^{1-d} + C(\mu h | \log h |)^l | \log h |^{-\sigma} h^{-d} \]

where the first term is a correct remainder estimate and the second term is an approximation error.
The principal part of this asymptotics is given by universal but rather implicit formula

\[-h^{-1} \int_{-\infty}^{\tau} F_{t \to h^{-1} \tau'} \bar{\chi}(\frac{t}{T}) \text{Tr}(e^{ih^{-1}tH} \psi) \, d\tau' \quad (12)\]

where \(\bar{\chi} \) is supported in \((-1, 1)\) and equal 1 in \((-\frac{1}{2}, \frac{1}{2})\) and \(T = T_0\) (or larger)
The principal part of this asymptotics is given by universal but rather implicit formula

\[-h^{-1} \int_{-\infty}^{\tau} F_{t \to h^{-1}} \bar{\chi}(\frac{t}{T}) \text{Tr}(e^{ih^{-1}tH} \psi) \, d\tau' \]

(12)

where \(\bar{\chi} \) is supported in \((-1, 1)\) and equal 1 in \((-\frac{1}{2}, \frac{1}{2})\) and \(T = T_0\) (or larger)

and after some calculations we can replace it by magnetic Weyl expression \(\int E^{MW}(\tau, x) \psi(x) \, dx \) as \(\mu \leq h^{\delta-1} \)
The principal part of this asymptotics is given by universal but rather implicit formula

\[-h^{-1} \int_{-\infty}^{\tau} F_{t \to h^{-1} \tau'} \bar{\chi}(\frac{t}{T}) \text{Tr}(e^{ih^{-1}tH} \psi) \, d\tau' \tag{12}\]

where \(\bar{\chi}\) is supported in \((-1, 1)\) and equal 1 in \((-\frac{1}{2}, \frac{1}{2})\) and \(T = T_0\) (or larger)

and after some calculations we can replace it by magnetic Weyl expression \(\int E^{\text{MW}}(\tau, x) \psi(x) \, dx\) as \(\mu \leq h^{\delta-1}\)

and by standard Weyl expression \(\int E^{\text{W}}(\tau, x) \psi(x) \, dx\) as \(\mu \leq h^{-\frac{1}{2}}\)
Thus:

Theorem 1 Let $d = 2r$ and condition (7) hold. Then for

$$\mu \leq h^{\delta-1}$$ \hspace{1cm} (13)

with an arbitrarily small exponent $\delta > 0$ the following estimate holds

$$\left| \int (e(x, x, \tau) - E^{\text{MW}}(x, \tau)) \psi(x) \, dx \right| \leq C \mu^{-1} h^{1-d} + C(\mu h | \log h|)^l | \log h|^{-\sigma} h^{-d}$$ \hspace{1cm} (14)
Thus:

Theorem 1 Let \(d = 2r \) and condition (7) hold. Then for \(\mu \leq h^{\delta-1} \) (13) with an arbitrarily small exponent \(\delta > 0 \) the following estimate holds

\[
| \int (e(x, x, \tau) - E^{MW}(x, \tau))\psi(x) \, dx | \leq C \mu^{-1} h^{1-d} + C(\mu h |\log h|)^l |\log h|^{-\sigma} h^{-d} \]

(14)

Look at the second term in the remainder estimate (14). If \(l \) is large, it will be small. So, in the smooth case we got sharp remainder estimate if (7) holds.
What about non-smooth case? In the next section we consider a different approach with $\varepsilon = C(\mu^{-1} h|\log h|)^{\frac{1}{2}}$ as $d = 2$ and $\varepsilon = C\mu^{-1}$ as $d = 2, 4, \ldots$.
What about non-smooth case? In the next section we consider a different approach with $\varepsilon = C(\mu^{-1}h|\log h|)^{\frac{1}{2}}$ as $d = 2$ and $\varepsilon = C\mu^{-1}$ as $d = 2, 4, \ldots$.

Present choice of $\varepsilon = C\mu h|\log h|$ is better iff

$$\mu \leq h^{-\frac{1}{3}}|\log h|^{\frac{1}{3}} \text{ for } d = 2,$$
$$\mu \leq h^{-\frac{1}{2}}|\log h|^{\frac{1}{2}} \text{ for } d = 4, 6, \ldots,$$
What about non-smooth case? In the next section we consider a different approach with $\varepsilon = C(\mu^{-1}h|\log h|)^{\frac{1}{2}}$ as $d = 2$ and $\varepsilon = C\mu^{-1}$ as $d = 2, 4, \ldots$.

Present choice of $\varepsilon = C\mu h|\log h|$ is better iff

$$\mu \leq h^{-\frac{1}{3}}|\log h|^{\frac{1}{3}} \text{ for } d = 2,$$

$$\mu \leq h^{-\frac{1}{2}}|\log h|^{\frac{1}{2}} \text{ for } d = 4, 6, \ldots,$$

and then we formulate

Corollary 2 *In frames of theorem 1 sharp remainder estimate $O(\mu^{-1}h^{1-d})$ holds for $\mu \leq h^{-\frac{1}{3}}|\log h|^{\frac{1}{3}}$ as $V \in C^{2,1}$ and for $\mu \leq h^{-\frac{1}{2}}|\log h|^{\frac{1}{2}}$ as $V \in C^{3,\frac{3}{2}}$.***
2.2 Not-Full-Rank case

Now we have free variables $x_{\text{free}} = (x_{2r+1}, \ldots, x_d)$ and we do not need condition (7) at this stage. Consider evolution along free variables.
2.2 Not-Full-Rank case

Now we have free variables \(x_{\text{free}} = (x_{2r+1}, \ldots, x_d) \) and we do not need condition (7) at this stage. Consider evolution along free variables. The speed is \(\sim |\xi_{\text{free}}| \) and the shift for time \(T \) is \(\sim |\xi_{\text{free}}|T \) and to make it observable we need to satisfy logarithmic uncertainty principle

\[
\min\left(|\xi_{\text{free}}|T, \varepsilon \right) \times |\xi_{\text{free}}| \geq C h |\log h| \tag{15}
\]
2.2 Not-Full-Rank case

Now we have free variables \(x_{\text{free}} = (x_{2r+1}, \ldots, x_d) \) and we do not need condition (7) at this stage. Consider evolution along free variables. The speed is \(\simeq |\xi_{\text{free}}| \) and the shift for time \(T \) is \(\simeq |\xi_{\text{free}}|T \) and to make it observable we need to satisfy logarithmic uncertainty principle

\[
\min\left(|\xi_{\text{free}}|T, \varepsilon \right) \times |\xi_{\text{free}}| \geq C h |\log h| \tag{15}
\]

and this means that we should take

\[
T = C h |\log h| \times |\xi_{\text{free}}|^{-2}, \quad \varepsilon = C h |\log h| \times |\xi_{\text{free}}|^{-1}. \tag{16}
\]
Since we want to plug $T_0 = \epsilon\mu^{-1}$ (from standard theory rescaled, as before) we need to assume

$$|\xi_{\text{free}}| \geq \bar{\varrho} = (C\mu h|\log h|)^{\frac{1}{2}} + C\mu^{-1};$$

(17)
Since we want to plug $T_0 = \epsilon \mu^{-1}$ (from standard theory rescaled, as before) we need to assume

$$|\xi_{\text{free}}| \geq \bar{\varrho} = (C \mu h |\log h|)^{\frac{1}{2}} + C \mu^{-1};$$

we added $C \mu^{-1}$ because for $|\xi_{\text{free}}| \leq C \mu^{-1}$ evolution with respect to other variables could be faster.
Since we want to plug $T_0 = \epsilon \mu^{-1}$ (from standard theory rescaled, as before) we need to assume

$$|\xi_{\text{free}}| \geq \bar{\varrho} = (C \mu h | \log h |)^{1/2} + C \mu^{-1};$$ \hfill (17)

we added $C \mu^{-1}$ because for $|\xi_{\text{free}}| \leq C \mu^{-1}$ evolution with respect to other variables could be faster. Then we need to plug $T_1 = \epsilon \varrho, \varrho = |\xi_{\text{free}}|$ because for larger $|t|$ singularity can turn back. Actually we can take $T_1 = \epsilon \varrho |\log \varrho|^2$ as $(l, \sigma) \succeq (1, 2)$ because we can choose time direction arbitrarily.
This leads to contribution of outer zone $\{|\xi_{\text{free}}| \geq \bar{\varrho}\}$ to the remainder estimate

$$Ch^{1-d} \int |\log \varrho|^{-\sigma} d\varrho^q \leq Ch^{1-d}$$
This leads to contribution of outer zone \(\{ |\xi_{\text{free}}| \geq \tilde{\varrho} \} \) to the remainder estimate

\[
Ch^{1-d} \int |\log \varrho|^{-\sigma} \, d\varrho^q \leq Ch^{1-d}
\]

and to contribution this zone to the approximation error

\[
Ch^{-d} \int (\frac{h}{\varrho})^l |\log \frac{h}{\varrho}|^{-\sigma} \, d\varrho^q \leq Ch^{1-d}
\]

as \((l, \sigma) = (1, 2)\) for \(q = 1\) and \((l, \sigma) = (1, 1)\) for \(q \geq 2\); \(\varrho^q\) appears as a volume of the layer \(\{ \varrho \leq |\xi_{\text{free}}| \leq 2\varrho \} \).
This leads to contribution of outer zone \(\{ |\xi_{\text{free}}| \geq \varrho \} \) to the remainder estimate

\[
Ch^{1-d} \int |\log \varrho|^{-\sigma} \, d\varrho^q \leq Ch^{1-d}
\]

and to contribution this zone to the approximation error

\[
Ch^{-d} \int \left(\frac{h}{\varrho} \right)^l |\log \frac{h}{\varrho}|^{-\sigma} \, d\varrho^q \leq Ch^{1-d}
\]

as \((l, \sigma) = (1, 2)\) for \(q = 1\) and \((l, \sigma) = (1, 1)\) for \(q \geq 2\); \(\varrho^q\) appears as a volume of the layer \(\{ \varrho \leq |\xi_{\text{free}}| \leq 2\varrho \}\).

Note, that we took \(\varepsilon\) depending on \(\xi\) here. It is easy to do everything rigorously.
Consider now inner zone \(\{ |\xi_{\text{free}}| \leq \bar{\varrho} \} \).
Consider now inner zone \(\{ |\xi_{\text{free}}| \leq \bar{\varrho} \} \).

One can take \(T_1 = \epsilon \mu^{-1} \) and \(\epsilon = C \mu h |\log h| \) here from the standard theory rescaled.
Consider now inner zone $\{|\xi_{\text{free}}| \leq \bar{\varrho}\}$.

One can take $T_1 = \epsilon \mu^{-1}$ and $\epsilon = C \mu h |\log h|$ here from the standard theory rescaled.

Then the contribution of this zone to the remainder estimate is $C \mu h^{1-d} \bar{\varrho}^q$; its contribution to the approximation error is smaller.
Consider now inner zone \(|\xi_{\text{free}}| \leq \bar{\varrho}\).

One can take \(T_1 = \epsilon \mu^{-1}\) and \(\epsilon = C \mu h|\log h|\) here from the standard theory rescaled.

Then the contribution of this zone to the remainder estimate is \(C \mu h^{1-d} \bar{\varrho}^q\); its contribution to the approximation error is smaller.

As \(q = 1\) this is better than \(C h^{1-d}\) iff \(\mu \leq h^{-\frac{1}{3}}|\log h|^{-\frac{1}{3}}\).
Consider now inner zone \(\{ |\xi_{\text{free}}| \leq \bar{\varrho} \} \).

One can take \(T_1 = \epsilon \mu^{-1} \) and \(\epsilon = C \mu h|\log h| \) here from the standard theory rescaled.

Then the contribution of this zone to the remainder estimate is \(C \mu h^{1-d} \bar{\varrho}^q \); its contribution to the approximation error is smaller.

As \(q = 1 \) this is better than \(Ch^{1-d} \) iff \(\mu \leq h^{-\frac{1}{3}}|\log h|^{-\frac{1}{3}} \); as \(q = 2 \) this is better than \(Ch^{1-d} \) iff \(\mu \leq h^{-\frac{1}{2}}|\log h|^{-\frac{1}{2}} \) etc.
Consider now inner zone \(\{ |\xi_{\text{free}}| \leq \varrho \} \).

One can take \(T_1 = \epsilon \mu^{-1} \) and \(\epsilon = C \mu h |\log h| \) here from the standard theory rescaled.

Then the contribution of this zone to the remainder estimate is \(C \mu h^{1-d} \varrho^q \); its contribution to the approximation error is smaller.

As \(q = 1 \) this is better than \(C h^{1-d} \) iff \(\mu \leq h^{-\frac{1}{3}} |\log h|^{-\frac{1}{3}} \); as \(q = 2 \) this is better than \(C h^{1-d} \) iff \(\mu \leq h^{-\frac{1}{2}} |\log h|^{-\frac{1}{2}} \) etc.

Actually one can improve this a bit:
Theorem 3 Let either $q = 1$, $V \in C^{1,2}$ or $q \geq 2$, $V \in C^{1,1}$. Then the following estimate holds

$$\left| \int (e(x, x, \tau) - E^{MW}(x, \tau)) \psi(x) \, dx \right| \leq C h^{1-d} + C (\mu h)^{\frac{q}{2} + 1} h^{-d}. \quad (18)$$

In particular, for $q = 1$, $\mu \leq h^{-\frac{1}{3}}$ and $q \geq 2$, $\mu \leq h^{-\frac{1}{2}}$ sharp remainder estimate $O(h^{1-d})$ holds.

Note, that at this stage extra smoothness is not very useful.
On the other hand, if for $\varrho \leq (\mu h | \log h)^{1/2}$ we take $T = h\varepsilon^{-1} | \log h |$, we will be able to use condition (7):

Theorem 4 Let either $q = 1$, $V \in C^{l,\sigma}$ or $q \geq 2$, $V \in C^{1,1}$. Let non-degeneracy condition (7) be fulfilled. Then the following estimate holds

$$\left| \int (e(x, x, \tau) - E^{MW}(x, \tau)) \psi(x) \, dx \right| \leq C h^{1-d} + C(\mu h)^{\frac{q}{2}+l} | \log h |^{l-\sigma} h^{-d}. \quad (19)$$

In particular, for $q = 1$, $l = 3/2$, $\sigma = 1/2$, $\mu \leq h^{-\frac{1}{2}} | \log h |^{-1/2}$ sharp remainder estimate $O(h^{1-d})$ holds.
3 Stronger Magnetic Field: Reduction

3.1 Preliminaries

Now we need to reduce operator to canonical form. Smooth operators as $d = 2$ are reduced to

$$
\sum_{m+k \geq 1} \mu^{2-2k-2m} a_{m,k}(x_2, \mu^{-1} hD_2)\left(h^2 D_1^2 + \mu^2 x_1^2\right)^{m}
$$

(20)
3 Stronger Magnetic Field: Reduction

3.1 Preliminaries

Now we need to reduce operator to canonical form. Smooth operators as $d = 2$ are reduced to

$$
\sum_{m+k \geq 1} \mu^{2-2k-2m} a_{m,k}(x_2, \mu^{-1} hD_2) \left(h^2 D_1^2 + \mu^2 x_1^2 \right)^m
$$

and as $d = 3$ to

$$
\sum_{m+k+j \geq 1} \mu^{2-2k-2m-2j} a_{m,k,j}(x_2, x_3, \mu^{-1} hD_2) \times
\left(h^2 D_1^2 + \mu^2 x_1^2 \right)^m (hD_3)^{2j}.
$$
Now there are two obstacles to do this: non-smoothness of operator and resonances. Both of these obstacles are extremely nasty for operator (2).
Now there are two obstacles to do this: non-smoothness of operator and resonances. Both of these obstacles are extremely nasty for operator (2).

Since we first ε-mollify operator, symbols $a_*(x_2, \xi_2)$ etc are smooth in ε-scale only with respect to both variables and to have them as proper $\mu^{-1}h$-pdos one needs to assume the logarithmic uncertainty principle $\varepsilon^2 \geq C\mu^{-1}h|\log h|$:

$$\varepsilon \geq C(\mu^{-1}h|\log \mu|)^{\frac{1}{2}}.$$ (22)
3.2 Main part

Let us consider reduction. Assuming that kinetic part H_0 of operator H is of the form (3) we make Fourier transform $x'' \rightarrow \mu^{-1} h \xi''$ with respect to x'', where $x = (x'; x''; x''') = (x_1, \ldots, x_r; x_{r+1}, \ldots, x_{2r}; x_{2r+1}, \ldots, x_d)$.
3.2 Main part

Let us consider reduction. Assuming that kinetic part H_0 of operator H is of the form (3) we make Fourier transform $x'' \mapsto \mu^{-1} h \xi''$ with respect to x'', where

$x = (x'; x''; x''') = (x_1, \ldots, x_r; x_{r+1}, \ldots, x_{2r}; x_{2r+1}, \ldots, x_d)$.

Then H is transformed into

$$
\sum_{1 \leq j \leq r} \left(h^2 D_j^2 + \mu^2 (\xi_{j+r} - f_j x_j)^2 \right) + \sum_{1 \leq k \leq q} h^2 D_{2r+k}^2 + V(x', \mu^{-1} h D \xi'', x''').
$$

(23)
Changing coordinates \(x'_{\text{new}} = \mu (\Phi^{-\frac{1}{2}} x' - \Phi^{\frac{1}{2}} \xi'') \) with

\[
\phi = \text{diag}(f_1^{-1}, \ldots, f_r^{-1})
\]

we get

\[
\sum_{1 \leq j \leq r} f_j (\mu^2 h^2 D_j^2 + x_j^2) + \sum_{1 \leq k \leq q} h^2 D_{2r+k}^2 + V(\mu^{-1} \Phi^{\frac{1}{2}} x' + \Phi x'', \mu^{-1} h D'', x''')
\]

where we redenoted \(\xi'' \) as \(x'' \).
Changing coordinates $x'_{\text{new}} = \mu(\Phi^{-\frac{1}{2}} x' - \Phi^{\frac{1}{2}} \xi'')$ with

$\phi = \text{diag}(f_1^{-1}, \ldots, f_r^{-1})$ we get

$$
\sum_{1 \leq j \leq r} f_j \left(\mu^2 h^2 D_j^2 + x_j^2 \right) + \sum_{1 \leq k \leq q} h^2 D_{2r+k}^2 + V(\mu^{-1} \Phi^{\frac{1}{2}} x' + \Phi x'', \mu^{-1} h D'', x''') \quad (24)
$$

where we redenoted ξ'' as x''.

On energy levels below $\tau \leq c$ we have $|x'| \leq C_0$ and the main part of (24) is given by

$$
\sum_{1 \leq j \leq r} f_j \left(\mu^2 h^2 D_j^2 + x_j^2 \right) + \sum_{1 \leq k \leq q} h^2 D_{2r+k}^2 + V(\Phi x'', \mu^{-1} h D'', x''') \quad (25)
$$
Studying operator (25) is easy: decomposing in Hermite functions of $(\mu h)^{-\frac{1}{2}} x'$ we arrive to a family of operators

$$H_\alpha = \sum_{1 \leq k \leq q} h^2 D_{2r+k}^2 + V_\alpha(\Phi x'', \mu^{-1} h D'', x''')$$ \hspace{1cm} (26)$$

where

$$V_\alpha = V + \sum_{1 \leq j \leq r} (2\alpha_j + 1) \mu h f_j, \quad \alpha \in \mathbb{Z}^+ r.$$ \hspace{1cm} (27)$$
• If $q = 0$ (26) is a family of $\mu^{-1}h$-pdos.
• If \(q = 0 \) \((26)\) is a family of \(\mu^{-1}h\)-pdos. Without non-degeneracy condition \((7)\) there is no hope to get a remainder estimate better than \(O(\mu h^{1-d}) \): if for some \(\alpha \) \(V_\alpha \equiv \tau \) both principal part and remainder estimate for \(H_\alpha \) are of magnitude \(\mu^r h^{-r} \) (and the family contains \(\asymp (\mu h)^{-r} \) operators: for \(|\alpha| \geq C(\mu h)^{-1} \) energy levels of \(H_\alpha \) are too high to contribute).
• If $q = 0$ (26) is a family of $\mu^{-1} h$-pdos. Without non-degeneracy condition (7) there is no hope to get a remainder estimate better than $O(\mu h^{1-d})$: if for some $\alpha V_\alpha \equiv \tau$ both principal part and remainder estimate for H_α are of magnitude $\mu^r h^{-r}$ (and the family contains $\simeq (\mu h)^{-r}$ operators: for $|\alpha| \geq C(\mu h)^{-1}$ energy levels of H_α are too high to contribute).

However, under non-degeneracy condition (7) remainder estimate for H_α is $O(\mu^{r-1} h^{1-r})$ and the total remainder estimate is $O(\mu^{r-1} h^{1-r} \times (\mu h)^{-r}) = O(\mu^{-1} h^{1-d})$.
• If $q \geq 1$ (26) is a family of Schrödinger operators with respect to free variables x''' with potential which are $\mu^{-1}h$-pdos with respect to x''.
• If $q \geq 1$ (26) is a family of Schrödinger operators with respect to free variables x''' with potential which are $\mu^{-1}h$-pdos with respect to x''. For such operators remainder estimate cannot be too bad, especially for larger q, l,
If \(q \geq 1 \) (26) is a family of Schrödinger operators with respect to free variables \(x''' \) with potential which are \(\mu^{-1}h \)-p dos with respect to \(x'' \). For such operators remainder estimate cannot be too bad, especially for larger \(q, l \), but it also cannot be too good: in the best case scenario it is \(O(h^{1-q} \times \mu^r h^r) \) while the principal part of asymptotics is of magnitude \(O(h^{-q} \times \mu^r h^r) \).
If $q \geq 1$ (26) is a family of Schrödinger operators with respect to free variables $x^{'''}$ with potential which are $\mu^{-1}h$-pdos with respect to x''. For such operators remainder estimate cannot be too bad, especially for larger q, l, but it also cannot be too good: in the best case scenario it is $O(h^{1-q} \times \mu^r h^r)$ while the principal part of asymptotics is of magnitude $O(h^{-q} \times \mu^r h^r)$. Multiplying by the number of operators we get remainder estimate $O(h^{1-d})$ (in the best case) and the principal part $\sim h^{-d}$.
• If \(q \geq 1 \) (26) is a family of Schrödinger operators with respect to free variables \(x^{'''} \) with potential which are \(\mu^{-1} h \)-pdos with respect to \(x^{''} \). For such operators remainder estimate cannot be too bad, especially for larger \(q, l \), but it also cannot be too good: in the best case scenario it is \(O(h^{1-q} \times \mu^r h^r) \) while the principal part of asymptotics is of magnitude \(O(h^{-q} \times \mu^r h^r) \). Multiplying by the number of operators we get remainder estimate \(O(h^{1-d}) \) (in the best case) and the principal part \(\asymp h^{-d} \).

We got another explanation of the difference between full-rank and not-full-rank cases.
3.3 Next terms

Well, only “main part” of H is of the form (25) and skipping $\mu^{-1} \Phi^{1/2} x'$ in V leads to the approximation error in operator of magnitude μ^{-1}, which is normally too large.
3.3 Next terms

Well, only “main part” of H is of the form (25) and skipping $\mu^{-1}\Phi^{\frac{1}{2}}x'$ in V leads to the approximation error in operator of magnitude μ^{-1}, which is normally too large.

The obvious approach would be to decompose $V(\mu^{-1}\Phi^{\frac{1}{2}}x' + \Phi x'', \mu^{-1} h D'', x''')$ into Taylor series with respect to x', with the small error in the smooth case and with an error $O(\mu^{-l} |\log \mu|^{-\sigma})$ in non-smooth case; then $\varepsilon = C \mu^{-1}$ would be the natural choice.
To get rid of linear with respect to x' terms we multiply operator (24) by $e^{-i\mu h^{-1}L}$ and $e^{i\mu h^{-1}L}$ from the left and right respectively with $L = L(x'', x''', \mu^{-1}hD''; x', \mu hD')$. Then operator will be replaced by

$$H + i\mu^{-1}h^{-1}[H^0, L] + \ldots$$

where $H^0 = \sum_{1 \leq j \leq r} f_j (\mu^2 h^2 D_j^2 + x_j^2)$ and we can find $L = \sum_{1 \leq j \leq r} L_j (x'', x''', \mu^{-1}hD'')\mu hD_j$ such that in $H + \mu^{-1}h^{-1}[H^0, L]$ linear terms disappear.
To get rid of linear with respect to x' terms we multiply operator (24) by $e^{-i\mu^{-1}h^{-1}L}$ and $e^{i\mu^{-1}h^{-1}L}$ from the left and right respectively with $L = L(x''', x''', \mu^{-1}hD''; x', \mu hD')$. Then operator will be replaced by

$$H + i\mu^{-1}h^{-1}[H^0, L] + \ldots$$

where $H^0 = \sum_{1 \leq j \leq r} f_j (\mu^2 h^2 D_j^2 + x_j^2)$ and we can find $L = \sum_{1 \leq j \leq r} L_j (x''', x''', \mu^{-1}hD'') \mu h D_j$ such that in $H + \mu^{-1}h^{-1}[H^0, L]$ linear terms disappear.

Now we have an error $O(\mu^{-l} |\log \mu|^{-\sigma} + \mu^{-2})$ which is sufficiently small unless $q = 0$ (because for $q \geq 1$ we consider only inner zone and we are looking for the less strong remainder estimate) and $(l, \sigma) \succ (2, 0)$.
In the latter case we should take care of terms of magnitude μ^{-2} which are either linear with respect to $x', \mu^{-1}hD'$ or quadratic. Multiplying by $e^{-i\mu^{-2}h^{-1}L}$ and $e^{i\mu^{-2}h^{-1}L}$ from the left and right respectively we can get rid of all linear and some quadratic terms: we are left with

$$\sum_j b_j(x'', x''', \mu^{-1}hD'', hD''')(\mu^2 h^2 D_j^2 + x_j^2) +$$ \hspace{1cm} (28)

$$\sum_{j \neq k, f_j = f_k} \left(b'_{jk}(x'', x''', \mu^{-1}hD'', hD''')(\mu^2 h^2 D_j D_k + x_j x_k) + b''_{jk}(x'', x''', \mu^{-1}hD'', hD''')\mu h(x_k D_j - x_j D_k) \right)$$ \hspace{1cm} (29)

Terms (28) are always there but terms (29) are due to second-order resonances: $f_j = f_k$ with $j \neq k$.
If we continue, third-order resonances $f_j = f_k + f_m$ and $f_j = 2f_k$ will generate non-removable terms etc.
If we continue, third-order resonances $f_j = f_k + f_m$ and $f_j = 2f_k$ will generate non-removable terms etc.

We can live with terms (29) and others non-removable terms. For operator (2) situation is way worse!
If we continue, third-order resonances $f_j = f_k + f_m$ and $f_j = 2f_k$ will generate non-removable terms etc.

We can live with terms (29) and others non-removable terms. For operator (2) situation is way worse!

Choice of ε. So we choose $\varepsilon = C\mu^{-1}$ as $\mu \leq h^{-1}|\log \mu|^{-1}$ and $\varepsilon = C(\mu^{-1}h|\log \mu|)^{1/2}$ otherwise.
3.4 Special case: \(d = 2, 3 \)

In this case we can take smaller \(\varepsilon = C(\mu^{-1}h|\log \mu|)^{\frac{1}{2}} \) even if \(\mu \leq h^{-1}|\log \mu|^{-1} \).
3.4 Special case: \(d = 2, 3 \)

In this case we can take smaller \(\varepsilon = C(\mu^{-1}h|\log \mu|)^{\frac{1}{2}} \) even if \(\mu \leq h^{-1}|\log \mu|^{-1} \). We do not decompose into Taylor series, but just are trying to remove as much as possible.
3.4 Special case: $d = 2, 3$

In this case we can take smaller $\varepsilon = C(\mu^{-1}h|\log \mu|)^{\frac{1}{2}}$ even if $\mu \leq h^{-1}|\log \mu|^{-1}$. We do not decompose into Taylor series, but just are trying to remove as much as possible. Note that for $r = 1$, $i\mu^{-1}h^{-1}[H^0, L]$ is an operator with the symbol $\partial_\phi L(x, \xi)$ where (ϕ, ρ) are polar coordinates in (x_1, ξ_1)-plane.
3.4 Special case: $d = 2, 3$

In this case we can take smaller $\varepsilon = C(\mu^{-1} h|\log \mu|)^{\frac{1}{2}}$ even if $\mu \leq h^{-1}|\log \mu|^{-1}$. We do not decompose into Taylor series, but just are trying to remove as much as possible. Note that for $r = 1$ $i \mu^{-1} h^{-1}[H^0, L]$ is an operator with the symbol $\partial_\phi L(x, \xi)$ where (ϕ, ρ) are polar coordinates in (x_1, ξ_1)-plane. Then we can remove any term with symbol K such that

$$\int_0^{2\pi} K(\rho \cos \phi, \rho \sin \phi, .)d\phi = 0$$

and we are left with terms which do not depend on ϕ:

$$W(x'', x''', \mu^{-1} hD'', hD'''; (h^2 D_1^2 + \mu^{-2} h_1^2)^{\frac{1}{2}}).$$
3.4 Special case: \(d = 2, 3 \)

In this case we can take smaller \(\varepsilon = C(\mu^{-1} h |\log \mu|)^{\frac{1}{2}} \) even if \(\mu \leq h^{-1} |\log \mu|^{-1} \). We do not decompose into Taylor series, but just are trying to remove as much as possible. Note that for \(r = 1 \) \(i \mu^{-1} h^{-1} [H^0, L] \) is an operator with the symbol \(\partial_\phi L(x, \xi) \) where \((\phi, \rho)\) are polar coordinates in \((x_1, \xi_1)\)-plane. Then we can remove any term with symbol \(K \) such that

\[
\int_0^{2\pi} K(\rho \cos \phi, \rho \sin \phi, .) d\phi = 0 \quad \text{and we are left with terms which do not depend on } \phi:
\]

\[
W \left(x'', x''', \mu^{-1} hD'', hD'''; (h^2 D_1^2 + \mu^{-2} h_1^2)^{\frac{1}{2}} \right).
\]

We can handle them but all construction is really complicated. This not work for \(r \geq 2 \).
3.5 Superstrong Magnetic Field

Everything works nicely as

$$\mu \geq \epsilon h^{-1}.$$ \hfill (30)
3.5 Superstrong Magnetic Field

Everything works nicely as

$$
\mu \geq \epsilon h^{-1}.
$$

(30)

To make the problem reasonable instead of $V \in C^{l,\sigma}$ we need to assume for $\mu \gg h^{-1}$ that

(H1) $\exists \alpha$ such that $V = - \sum_j (2\alpha_j + 1)\mu h f_j + V'$ with $V' \in C^{l,\sigma}$ as $q = 0$.

(H2) $V = - \sum_j \mu h f_j + V'$ with $V' \in C^{l,\sigma}$ as $q \geq 1$.
Now after we reduced operator to quasicanonical form, we can derive sharp spectral asymptotics. In principal, we have a family \(\{H_\alpha\}_{\alpha \in J} \) of operators, but there could be non-diagonal terms of magnitude \(O(\mu^{-2}) \). Still I was able to tackle them.

Note that \(\#J \asymp (\mu h)^{-r} \) as \(\mu h \leq 1 \) and \(\#J \asymp 1 \) as \(\mu h \geq 1 \) under assumption (H1) or (H2) (case when \(\#J = 0 \) is not interesting).

4.1 Full-Rank case

In this case we have a family of \(\mu^{-1} h \)-pdos \(V_\alpha(x'', \mu^{-1} hD'') \). We must assume that they are non-degenerated on level \(\tau \) which
means condition (7) for $\mu h \leq \epsilon_0$ and weaker condition

$$|\nabla V| + \min_{\alpha \in \mathbb{Z}^+_r} |V + \sum_j (2\alpha_j + 1)\mu h f_j - \tau| \geq \epsilon$$

(31)

for $\mu h \geq \epsilon_0$.
means condition (7) for $\mu h \leq \epsilon_0$ and weaker condition

$$|\nabla V| + \min_{\alpha \in \mathbb{Z}^+} |V + \sum_j (2\alpha_j + 1)\mu h f_j - \tau| \geq \epsilon$$

(31)

for $\mu h \geq \epsilon_0$.

Then the contribution of each of them to remainder estimate is $O(\mu^{r-1} h^{1-r})$ and to the approximation error $O(\epsilon^l |\log \epsilon|^{-\sigma} \mu^{r} h^{-r})$ and there are $(\mu h)^{-r} + 1$ of them. This and the choice of ϵ results in the following main statements:
Theorem 5 Let $d = 2r$.

(i) Let $\mu h \leq \epsilon_0$ and condition (7) hold. Then for

$$\mu \geq h^{-\frac{1}{2}}|\log h|^{-\frac{1}{2}}$$

(32)

the following estimate holds

$$R = | \int (e(x, x, \tau) - E^\text{MW}(x, \tau))\psi(x) \, dx | \leq$$

$$C \mu^{-1} h^{1-d} + C \mu^{-l} |\log h|^{-\sigma} h^{-d} + C \mu^{-\frac{l}{2}} h^{-d+\frac{l}{2}} |\log h|^{\frac{l}{2}-\sigma}.$$ (33)

(ii) Let $\mu h \geq \epsilon_0$ and conditions (H1), (31) hold. Then

$$R \leq C \mu^{r-1} h^{1-r} + C \mu^{r-\frac{l}{2}} h^{-r+\frac{l}{2}} |\log \mu|^{\frac{l}{2}-\sigma}.$$ (34)
One can improve this theorem as \(d = 2 \) because of the better choice of \(\varepsilon \) for \(\mu \leq h^{-1} |\log h|^{-1} \):

Theorem 6 Let \(d = 2 \).

(i) Let \(\mu h \leq \epsilon_0 \) and condition (7) hold. Then for

\[
\begin{align*}
 h^{-\frac{1}{3}} |\log h|^{-\frac{1}{3}} & \leq \mu \leq h^{-1} |\log h|^{-1} \\
\end{align*}
\] (35)

the following estimate holds

\[
R' = | \int (e(x, x, \tau) - E^{MW}(x, \tau) - E^{MW}_{corr}(x, \tau)) \psi(x) \, dx | \leq C \mu^{-1} h^{1-d} + C \mu^{-\frac{l}{2}} h^{-d+\frac{l}{2}} |\log h|^{\frac{l}{2}-\sigma}. \] (36)
Here $E_{\text{corr}}^{\text{MW}}(x, \tau)$ is a correction arising from the fact that the difference $\int_C V \, d\phi$ where C is a magnetron orbit cannot be calculated with the good precision by Taylor decomposition of V in its center if V is not smooth. The formula for $E_{\text{corr}}^{\text{MW}}$ is rather complicated.

Combining with Theorem 1 we arrive to

Corollary 7 (i) For $d = 2r$, $\mu h \leq \epsilon_0$ and condition (7) fulfilled sharp remainder estimate $O(\mu^{-1} h^{1-d})$ is achieved as $V \in C^{3, \frac{3}{2}}$ in the general case and $V \in C^{2, 1}$ as $d = 2$.

(ii) For $d = 2r$, $\mu h \geq \epsilon_0$ and conditions (H1), (31) fulfilled sharp remainder estimate $O(\mu^{r-1} h^{1-r})$ is achieved as $V \in C^{2, 1}$.
4.2 Not-Full-Rank case

As I mentioned, we have now essentially a family of q-dimensional Schrödinger operators

$$\sum_{1 \leq j \leq q} h^2 D_j^2 + V_\alpha(x'', x''', \mu^{-1} h D''')$$

with potential which are r-dimensional $\mu^{-1} h$-pdos.
4.2 Not-Full-Rank case

As I mentioned, we have now essentially a family of q-dimensional Schrödinger operators

$$\sum_{1 \leq j \leq q} h^2 D_j^2 + V_\alpha(x'', x''', \mu^{-1} h D''')$$

with potential which are r-dimensional $\mu^{-1} h$-pdos.

Assume first that non-degeneracy condition (7) holds as $\mu h \leq \epsilon_0$ and conditions (H2), (31) hold as $\mu h \leq \epsilon_0$. Then each operator gives us remainder estimate $O(\mu^r h^{1-r-q})$.
4.2 Not-Full-Rank case

As I mentioned, we have now essentially a family of q-dimensional Schrödinger operators

$$\sum_{1 \leq j \leq q} h^2 D_j^2 + V_{\alpha}(x'', x''', \mu^{-1} h D''')$$

with potential which are r-dimensional $\mu^{-1} h$-pdos.

Assume first that non-degeneracy condition (7) holds as $\mu h \leq \epsilon_0$ and conditions (H2), (31) hold as $\mu h \leq \epsilon_0$. Then each operator gives us remainder estimate $O(\mu^r h^{1-r-q})$. Actually, the same would be true as either $q \geq 3$ or $q = 2$, $(l, \sigma) \geq (2, 0)$ without any non-degeneracy condition.
4.2 Not-Full-Rank case

As I mentioned, we have now essentially a family of q-dimensional Schrödinger operators

$$
\sum_{1 \leq j \leq q} h^2 D_j^2 + V_\alpha(x'', x''', \mu^{-1} hD''')
$$

with potential which are r-dimensional $\mu^{-1}h$-pdos. Assume first that non-degeneracy condition (7) holds as $\mu h \leq \epsilon_0$ and conditions (H2), (31) hold as $\mu h \leq \epsilon_0$. Then each operator gives us remainder estimate $O(\mu^r h^{1-r-q})$. Actually, the same would be true as either $q \geq 3$ or $q = 2$, $(l, \sigma) \succeq (2, 0)$ without any non-degeneracy condition. Otherwise estimate would be not as good. While arguments are instructive, we have no time for
them now.
Further, there are $\asymp ((\mu h)^{-r} + 1)$ of these operators; so the total remainder estimate is $O(h^{1-d} + \mu^r h^{1-r})$.
Further, there are \(\asymp ((\mu h)^{-r} + 1) \) of these operators; so the total remainder estimate is \(O(h^{1-d} + \mu^r h^{1-r}) \). For \(q \geq 2 \), the contribution of zone \(\{|\xi'''| \leq \bar{\rho}\} \) to the approximation error is \(O(\bar{\rho}^{q-2} \varepsilon^{-l} |\log \varepsilon|^{-\sigma}) \);
Further, there are $\asymp ((\mu h)^{-r} + 1)$ of these operators; so the total remainder estimate is $O(h^{1-d} + \mu^r h^{1-r})$. For $q \geq 2$ contribution of zone $\{ |\xi'''| \leq \bar{\rho} \}$ to the approximation error is $O(\bar{\rho}^{q-2} \varepsilon^{-l} |\log \varepsilon|^{-\sigma})$; for $q = 1$ and respective-non-degeneracy condition fulfilled the answer is $O(\varepsilon^{-l} |\log \varepsilon|^{-\sigma})$.
Further, there are $\asymp ((\mu h)^{-r} + 1)$ of these operators; so the total remainder estimate is $O(h^{1-d} + \mu^r h^{1-r})$. For $q \geq 2$ contribution of zone $\{|\xi'''| \leq \bar{\varrho}\}$ to the approximation error is $O(\bar{\varrho}^{q-2}\varepsilon^{-l}|\log \varepsilon|^{-\sigma})$; for $q = 1$ and respective-non-degeneracy condition fulfilled the answer is $O(\varepsilon^{-l}|\log \varepsilon|^{-\sigma})$.

Actually, there should be extra mollification to get above-remainder estimate but it does not change the final answer.
Further, there are \(\asymp ((\mu h)^{-r} + 1) \) of these operators; so the total remainder estimate is \(O(h^{1-d} + \mu^r h^{1-r}) \). For \(q \geq 2 \) contribution of zone \(\{|\xi'''| \leq \bar{\rho}\} \) to the approximation error is \(O(\bar{\rho}^{q-2}\varepsilon^{-l}|\log \varepsilon|^{-\sigma}) \); for \(q = 1 \) and respective-non-degeneracy condition fulfilled the answer is \(O(\varepsilon^{-l}|\log \varepsilon|^{-\sigma}) \).

Actually, there should be extra mollification to get above-remainder estimate but it does not change the final answer.

So calculating approximation error (and combining with Theorems 3, 4) we get:
Theorem 8 Let $q \geq 1$. Let either one of the following assumptions be fulfilled:

(a) $q \geq 3$ and $V \in C^{1,1}$,

(b) $q = 2$ and $V \in C^{2,1}$,

or non-degeneracy condition (7) and one of the following assumptions be fulfilled:

(c) $q = 2$, $V \in C^{1,1}$,

(d) $q = 1$, $V \in C^{3/2,1/2}$,

Then for $\mu h \leq \epsilon_0$

$$R = | \int (e(x,x,\tau) - E^{MW}(x,\tau))\psi(x) \, dx | \leq C h^{1-d}. \quad (37)$$

Because $d = 3 \implies r = 1$ and special choice of ϵ we have
Theorem 9 \(\text{Let } d = 3, \ V \in C^{1,2} \) and non-degeneracy condition (7) be fulfilled. Then for \(\mu h \leq \epsilon_0 \)

\[
R' = \left| \int \left(e(x, x, \tau) - E^\text{MW}(x, \tau) \right) - E^\text{MW}_{\text{corr}} (x, \tau) \right| \psi(x) dx \right| \leq C h^{1-d}. \quad (38)
\]
Theorem 10 Let $q \geq 1$, $\mu h \geq \epsilon_0$ and (H2) hold. Let

either one of the following assumptions be fulfilled:

(a) $q \geq 3$ and $V \in C^{1,1}$,

(b) $q = 2$ and $V \in C^{2,1}$,

or $q = 1, 2$, $V \in C^{1,1}$ and non-degeneracy condition (31) be fulfilled.

Then

$$R \leq C \mu^r h^{1-d+r}.$$ (39)
This lecture was prepared using \TeX-power package for \LaTeX
No animal suffered and no Microsoft product was used in the process