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Introduction Preliminary remarks

Introduction

This work is inspired by several remarkable papers of L. Parnovski and
R. Shterenberg [PS1, PS2, PS3], S. Morozov, L. Parnovski and
R. Shterenberg [MPS] and earlier papers by A. Sobolev [So1, So2]. I
wanted to understand the approach of the authors and, combining their
ideas with my own approach, generalize their results.

In these papers the complete asymptotic expansion of the integrated
density of states N(𝜆) for operators Δ + V was derived as 𝜆 → +∞; here
Δ is a positive Laplacian and V is a periodic or almost periodic potential
(satisfying certain conditions). In [MPS] more general operators were
considered.

Further, in [PS3] the complete asymptotic expansion of e(x , x , 𝜆) was
derived, where e(x , y , 𝜆) is the Schwartz kernel of the spectral projector.
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Introduction Preliminary remarks

I borrowed from these papers Conditions (A)–(D) and the special gauge
transformation and added the non-stationary semiclassical Schrödinger
operator method [Ivr1] and extremely long propagation of singularities. I
believe that this is a simpler and more powerful approach. Also, in
contrast to those papers I consider more general semiclassical asymptotics.

Consider a scalar self-adjoint h-pseudo-differential operator A(x , hD) in Rd

with the Weyl symbol A(x , 𝜉), such that

|D𝛼
x D

𝛽
𝜉 A(x , 𝜉)| ≤ c𝛼𝛽(|𝜉|+ 1)m ∀𝛼, 𝛽, ∀x , 𝜉 (1)

and

A(x , 𝜉) ≥ c0|𝜉|m − C0 ∀x , 𝜉. (2)

Then it is semibounded from below. Let eh(x , y , 𝜆) be the Schwartz kernel
of its spectral projector E (𝜆) = θ(𝜆− A).
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Introduction Preliminary remarks

We are interested in the semiclassical asymptotics of eh(x , x , 𝜆) and

Nh(𝜆) = M[e(x , x , 𝜆)] := lim
ℓ→∞

(mes(ℓX ))−1

∫︁
ℓX

e(x , x , 𝜆) dx , (3)

where 0 ∈ X is an open domain in Rd . The latter expression in the cases
we are interested in does not depend on X and is called Integrated Density
of States.

It is well-known that under 𝜉-microhyperbolicity condition on the energy
level 𝜆

|A(x , 𝜉, h)− 𝜆|+ |∇𝜉A(x , 𝜉, h)| ≥ 𝜖0 (4)

the following asymptotics holds

eh(x , x , 𝜆) = 𝜅0(x , 𝜆)h
−d + O(h1−d) as h → +0, (5)

and therefore

Nh(𝜆) = 𝜅̄0(𝜆)h
−d + O(h1−d), (6)

where here and below

𝜅̄n(𝜆) = M[𝜅n(x , 𝜆)]. (7)
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Introduction Preliminary remarks

Also it is known (see Chapter 4 of [Ivr1]) that under microhyperbolicity
condition (4) for |𝜏 − 𝜆| < 𝜖 the following complete asymptotics holds:

Ft→h−1𝜏

(︀
𝜒̄T (t)

(︀
Q2xuh(x , y , t)

tQ1y

)︀
|y=x

)︀
∼

∑︁
n≥0

𝜅′n,Q1,Q2
(x , 𝜏)h1−d+n,

(8)
where uh(x , y , t) is the Schwartz kernel of of the propagator e ih

−1tA,
𝜒̄ ∈ C∞

0 ([−1, 1]), 𝜒̄(t) = 1 at [−1
2 ,

1
2 ], T ∈ [h1−𝛿,T *], T * is a small

constant here and Qj = Qj(x , hD) are h-pseudo-differential operator; we
write operators, acting with respect to y on Schwartz kernels to the right
of it.
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Introduction Preliminary remarks

Further,

supp(Q1) ∩ supp(Q2) = ∅ =⇒ 𝜅′n,Q1,Q2
(x , 𝜏) = 0, (9)

where supp(Qj) is a support of its symbol Qj(x , 𝜉) and

𝜏 ≤ 𝜏* = inf
x ,𝜉

A(x , 𝜉) =⇒ 𝜅′n,Q1,Q2
(x , 𝜏) = 0. (10)

Let

𝜅n,Q1,Q2(x , 𝜏) =

∫︁ 𝜏

−∞
𝜅′n,Q1,Q2

(x , 𝜏 ′) d𝜏. (11)

In what follows we skip subscripts Qj = I .

This equality (8) plus Hörmander’s Tauberian theorem imply the
remainder estimates O(h1−d) for Q2xeh(x , y , 𝜏)

tQ1y |x=y . On the other
hand, if we can improve (8) by increasing T *, we can improve the
remainder estimate to O(T *−1h1−d) 1).

1) Provided T * = O(h−M) for some M.
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Introduction Preliminary remarks

Observe that for A = A(hD)

eh(x , x , 𝜆) = Nh(𝜆) = 𝜅0(𝜆)h
−d . (12)

In this paper we consider

A(x , hD) = A0(hD) + 𝜀B(x , hD), (13)

where A0(𝜉) satisfies (1), (2) and (4) and B(x , 𝜉) satisfies (1) and 𝜀 > 0 is
a small parameter. Later we assume that B(x , hD) is almost periodic and
impose other conditions.

For operator (13) with 𝜀 ≤ 𝜖0 the equality (8) holds with T * = 𝜖1𝜀
−1

where 𝜖j are small constants and we assume that 𝜀 ≥ hM for some M.
Then the remainder estimate is O(𝜀h1−d) (Theorem 2.4 of [Ivr3]).
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Introduction Main Theorem

Main Theorem

Consider the main topic of this work where we will use ideas from
[PS1, PS2, PS3, MPS]: the case of an almost periodic operator B(x , hD),

B(x , 𝜉) =
∑︁
𝜃∈Θ

b𝜃(𝜉)e
i⟨𝜃,x⟩ (14)

with discrete (i.e. without any accumulation points) frequency set Θ.

Operator B is quasiperiodic if Θ is a finite set, periodic if Θ is a lattice
and almost periodic in the general case.

Our goal is to derive (under certain assumptions) complete semiclassical
asymptotics:

eh,𝜀(x , x , 𝜏) ∼
∑︁
n≥0

𝜅n,𝜀x(x , 𝜏)h
−d+n. (15)
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Introduction Main Theorem

In addition to microhyperbolicity condition (4) we assume that
Σ𝜆 = {𝜉 : A0(𝜉) = 𝜆} is a strongly convex surface i.e.

±
∑︁
j ,k

A0
𝜉j𝜉k

(𝜉)𝜂j𝜂k ≥ 𝜖|𝜂|2 ∀𝜉 : A0(𝜉) = 𝜆 ∀𝜂 :
∑︁
j

A0
𝜉j
(𝜉)𝜂j = 0,

(16)
where the sign depends on the connected component of Σ𝜆, containing 𝜉.

Without any loss of generality we assume that Θ spans Rd , contains 0 and
is symmetric about 0.

Condition (A).

For each 𝜃1, . . . , 𝜃d ∈ Θ either 𝜃1, . . . , 𝜃d are linearly independent over R
or they linearly dependent over Z.
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Introduction Main Theorem

Assume also that

Condition (B).

For any arbitrarily large L and for any sufficiently large real number 𝜔
there are a finite symmetric about 0 set Θ′ := Θ′

(L,𝜔) ⊂ (Θ ∩ B(0, 𝜔))

(with B(𝜉, r) the ball of the radius r and center 𝜉) and a “cut-off”
coefficients b′𝜃 := b′𝜃,(L,𝜔), such that

B ′ := B ′
(L,𝜔)(x , 𝜉) :=

∑︁
𝜃∈Θ′

b′𝜃(𝜉)e
i⟨𝜃,x⟩ (17)

satisfies

‖D𝛼
x D

𝛽
𝜉

(︀
B − B ′)︀‖L∞ ≤ 𝜔−L(|𝜉|+ 1)m ∀𝛼, 𝛽 : |𝛼| ≤ L, |𝛽| ≤ L. (18)
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Introduction Main Theorem

Remark 1.

1 Then

|D𝛽
𝜉 b𝜃| = O(|𝜃|−∞(|𝜉|+ 1)m) as |𝜃| → ∞ (19)

and

|D𝛽
𝜉 (b𝜃 − b′𝜃)| = O(𝜔−∞(|𝜉|+ 1)m). (20)

Indeed, one suffices to observe that b𝜃(𝜉) = M(B(x , 𝜉)e−i⟨𝜃,x⟩) etc.

2 On the other hand, under additional assumption

#{𝜃 ∈ Θ, |𝜃| ≤ 𝜔} = O(𝜔p) as 𝜔 → ∞ (21)

for some p, (19) implies Condition (B) with Θ′
(L,𝜔)

:= Θ ∩ B(0, 𝜔).

However we will need Θ′
(L,𝜔) in the next condition.
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Introduction Main Theorem

Remark 1 (Continued).

3 We need only to estimate the operator norm of the difference between
B(x , hD) and B ′(x , hD) (from Hm to L2); therefore for differential
operators we can weaken (18).

4 While Condition (B) is Condition B of [PS3], adopted to our case,
Condition (A) and Conditions (C), (D) below are borrowed without
any modifications (except changing notations).
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Introduction Main Theorem

We need to impose a the Diophantine condition on the frequencies of B.
We need some definitions.

We fix a natural number K (the choice of K
will be determined later by how many terms in the asymptotic
decomposition of e(x , x , 𝜆) we want to obtain) and consider Θ′

K , which
here and below denotes the algebraic sum of K copies of Θ′:

Θ′
K :=

∑︁
1≤i≤K

Θ′. (22)

We say that V is a quasi-lattice subspace of dimension q, if V is a linear
span of q linear independent vectors 𝜃1, . . . , 𝜃q ∈ Θ′

K ∖ 0. Obviously, the
zero space is a quasi-lattice subspace of dimension 0 and Rd is a
quasi-lattice subspace of dimension d .

We denote by 𝒱q the collection of all quasi-lattice subspaces of dimension
q and also 𝒱 :=

⋃︀
q≥0 𝒱q.
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Introduction Main Theorem

Consider V,U ∈ 𝒱. We say that these subspaces are strongly distinct, if

neither of them is a subspace of the other one. Next, let (̂V,U) ∈ [0, 𝜋/2]
be the angle between them, i.e. the angle between V⊖W and U⊖W,
W = U ∩V. This angle is positive iff V and U are strongly distinct.

Condition (C).

For each fixed L and K the sets Θ′
(L,𝜔) satisfying (17) and (18) can be

chosen in such a way that for sufficiently large 𝜔 we have

s(𝜔) = s(Θ′
K ) := inf

V,U∈𝒱
sin((̂V,U)) ≥ 𝜔−1 (23)

and

r(𝜔) := inf
𝜃∈Θ′

K∖0
|𝜃| ≥ 𝜔−1, (24)

where the implied constant (how large should 𝜔 be) depends on L and K .
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Introduction Main Theorem

Let V be the span of 𝜃1, . . . , 𝜃q ∈ Θ′
K ∖ 0. Then due to Condition (A)

each element of the set Θ′
K ∩V is a linear combination of 𝜃1, . . . , 𝜃q with

rational coefficients. Since the set Θ′
K ∩V is finite, this implies that the

set Θ′
∞ ∩V is discrete and is, therefore, a lattice in V. We denote this

lattice by Γ(𝜔;V).

Our final condition states that this lattice cannot be too dense.

Condition (D).

We can choose Θ′
(L;𝜔), satisfying Conditions (B) and (C) in such a way

that for sufficiently large 𝜔 and for each V ∈ 𝒱, V ̸= Rd , we have

vol(V/Γ(𝜔;V)) ≥ 𝜔−1. (25)
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Introduction Main Theorem

Remark 2.

See Section 2 of [PS3] for discussion of these conditions.

1 In particular, if Θ is a lattice, then Conditions (A)–(D) are fulfilled.

2 Further, if Θ is a finite set and Condition (A) is fulfilled, then
Θ∞ :=

⋃︀
K≥1ΘK is a lattice and Conditions (B)–(D) are fulfilled.

3 Furthermore, the same is true, if Θ is an arithmetic sum of a finite set
and a lattice.
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Introduction Main Theorem

Theorem 3 (Main Theorem).

Let A be a self-adjoint operator (13), where A0 satisfies (1), (2), (4) and
(16) and B satisfies (1).

Let Conditions (A)–(D) be fulfilled. Then for |𝜏 − 𝜆| < 𝜖, 𝜀 ≤ h𝜗, 𝜗 > 0

eh,𝜀(x , x , 𝜏) ∼
∑︁
n≥0

𝜅n(x , 𝜏 ; 𝜀)h
−d+n. (26)

Corollary 4.

In the framework of Theorem 3

Nh,𝜀(𝜏) ∼
∑︁
n≥0

𝜅̄n(𝜏 ; 𝜀)h
−d+n. (27)
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Proof of the Main Theorem Preliminary Analysis

Proof (sketched)

Remark 5.

1 It follows from Section 4 of [Ivr1] that the contribution of the zone
{𝜉 : |A0(𝜉)− 𝜏 | ≥ C0𝜀+ h1−𝜍} to the remainder is negligible. Here
and below 𝜍 > 0 is an arbitrarily small exponent.
Therefore we restrict ourself by the analysis in the zone Ω𝜏 .

2 To upgrade (8) with T = T* (a small constant) to (8) with T = T *

it is sufficient to prove that

|Ft→h−1𝜏

(︀
𝜒T (t)

(︀
Q2xuh(x , y , t)

tQ1y

)︀⃒⃒
y=x

)︀
| ≤ Csh

−d+s , (28)

for |𝜏 − 𝜆| ≤ 𝜖, T ∈ [T*, T
*] and 𝜒 ∈ C∞

0 ([−1,−1
2 ] ∪ [12 , 1]), where

s is an arbitrarily large exponent.
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Proof of the Main Theorem Preliminary Analysis

Remark 6.

1 It suffices to prove asymptotics

eh(x , x , 𝜏) =
∑︁

0≤n≤M

𝜅n(x , 𝜏)h
−d+n + O(h−d+M) (29)

with arbitrarily large fixed M. To do so we will use the semiclassical
Schrödinger operator method with maximal time T * = h−M .

2 Then we can replace operator B by operator B ′, provided operator
norm of B − B ′ from Hm to L2 does not exceed Ch3M .

3 First such replacement will be B ′ := B ′
(L,𝜔) from Condition (B) with

𝜔 = h−𝜎, arbitrarily small 𝜎 > 0 and L = 3M/𝜎.
So, from now Θ and B are effectively replaced by Θ′ := Θ′

(L,𝜔) and

B ′
(L,𝜔) correspondingly .
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Proof of the Main Theorem Gauge transformation

Consider now the “gauge” transformation A ↦→ e−i𝜀h−1PAe i𝜀h
−1P with

h-pseudodifferential operator P. Observe that

e−i𝜀h−1PAe i𝜀h
−1P = A− i𝜀h−1[P,A] +

∑︁
2≤n≤K−1

1

n!
(−i𝜀h−1)n AdnP(A)

+

∫︁ 1

0

1

(K − 1)!
(1− s)K−1(−i𝜀h−1)Ke−i𝜀h−1sP AdKP (A)e

i𝜀h−1sP ds, (30)

where Ad0P(A) = A and Adn+1
P (A) = [P,AdnP(A)] for n = 0, 1, . . ..

Thus formally we can compensate 𝜀B, taking

P =
∑︁
𝜃

ih
(︀
A0(𝜉 + 𝜃h/2)− A0(𝜉 − 𝜃h/2)

)︀−1
b𝜃(𝜉)e

i⟨𝜃,x⟩, (31)

so that

ih−1[P,A0] = B =⇒ ih−1[P,A] = B + i𝜀h−1[P,B]. (32)
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Proof of the Main Theorem Gauge transformation

Then perturbation 𝜀B is replaced by 𝜀2B ′, which is the right hand
expression in (30) minus A0, i.e.

B ′ = −ih−1[P,B] +
∑︁

2≤n≤K−1

1

n!
𝜀n−2(−ih−1)n AdnP(A), (33)

where we ignored the remainder.

New perturbation, again formally, has a magnitude of 𝜀2. Repeating this
process we will make a perturbation negligible.
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Proof of the Main Theorem Gauge transformation

Remark 7.

However, we need to address the following issues issues:

1 Denominator
h−1

(︀
A0(𝜉 + 𝜃h/2)− A0(𝜉 − 𝜃h/2)

)︀
= ⟨∇𝜉A

0, 𝜃⟩+ O(h1−𝜎) could be
small.

2 In B ′ set Θ′ increases: 𝜀2B ′ = 𝜀2B ′
2 + 𝜀3B ′

3 + . . .+ 𝜀MB ′
M , where for

B ′
j the frequency set is Θ′

j (the arithmetic sum of j copies of Θ′).

3 We need to prove that the remainder is negligible.

4 This transformation was used in Section 9 of [PS3] (etc); in contrast
to these papers we use Weyl quantization instead of pq-quantization,
and have therefore

(︀
A0(𝜉 + 𝜃h/2)− A0(𝜉 − 𝜃h/2)

)︀
instead of(︀

A0(𝜉 + 𝜃h)− A0(𝜉)
)︀
.

Victor Ivrii (Math., Toronto) Complete Semiclassical Spectral Asymptotics November 6, 2018 23 / 42



Proof of the Main Theorem Gauge transformation

Remark 7.

However, we need to address the following issues issues:

1 Denominator
h−1

(︀
A0(𝜉 + 𝜃h/2)− A0(𝜉 − 𝜃h/2)

)︀
= ⟨∇𝜉A

0, 𝜃⟩+ O(h1−𝜎) could be
small.

2 In B ′ set Θ′ increases: 𝜀2B ′ = 𝜀2B ′
2 + 𝜀3B ′

3 + . . .+ 𝜀MB ′
M , where for

B ′
j the frequency set is Θ′

j (the arithmetic sum of j copies of Θ′).

3 We need to prove that the remainder is negligible.

4 This transformation was used in Section 9 of [PS3] (etc); in contrast
to these papers we use Weyl quantization instead of pq-quantization,
and have therefore

(︀
A0(𝜉 + 𝜃h/2)− A0(𝜉 − 𝜃h/2)

)︀
instead of(︀

A0(𝜉 + 𝜃h)− A0(𝜉)
)︀
.

Victor Ivrii (Math., Toronto) Complete Semiclassical Spectral Asymptotics November 6, 2018 23 / 42



Proof of the Main Theorem Gauge transformation

Remark 7.

However, we need to address the following issues issues:

1 Denominator
h−1

(︀
A0(𝜉 + 𝜃h/2)− A0(𝜉 − 𝜃h/2)

)︀
= ⟨∇𝜉A

0, 𝜃⟩+ O(h1−𝜎) could be
small.

2 In B ′ set Θ′ increases: 𝜀2B ′ = 𝜀2B ′
2 + 𝜀3B ′

3 + . . .+ 𝜀MB ′
M , where for

B ′
j the frequency set is Θ′

j (the arithmetic sum of j copies of Θ′).

3 We need to prove that the remainder is negligible.

4 This transformation was used in Section 9 of [PS3] (etc); in contrast
to these papers we use Weyl quantization instead of pq-quantization,
and have therefore

(︀
A0(𝜉 + 𝜃h/2)− A0(𝜉 − 𝜃h/2)

)︀
instead of(︀

A0(𝜉 + 𝜃h)− A0(𝜉)
)︀
.

Victor Ivrii (Math., Toronto) Complete Semiclassical Spectral Asymptotics November 6, 2018 23 / 42



Proof of the Main Theorem Gauge transformation

Remark 7.

However, we need to address the following issues issues:

1 Denominator
h−1

(︀
A0(𝜉 + 𝜃h/2)− A0(𝜉 − 𝜃h/2)

)︀
= ⟨∇𝜉A

0, 𝜃⟩+ O(h1−𝜎) could be
small.

2 In B ′ set Θ′ increases: 𝜀2B ′ = 𝜀2B ′
2 + 𝜀3B ′

3 + . . .+ 𝜀MB ′
M , where for

B ′
j the frequency set is Θ′

j (the arithmetic sum of j copies of Θ′).

3 We need to prove that the remainder is negligible.

4 This transformation was used in Section 9 of [PS3] (etc); in contrast
to these papers we use Weyl quantization instead of pq-quantization,
and have therefore

(︀
A0(𝜉 + 𝜃h/2)− A0(𝜉 − 𝜃h/2)

)︀
instead of(︀

A0(𝜉 + 𝜃h)− A0(𝜉)
)︀
.

Victor Ivrii (Math., Toronto) Complete Semiclassical Spectral Asymptotics November 6, 2018 23 / 42



Proof of the Main Theorem Non-resonant zone

One can see easily that if inequality

|⟨∇𝜉A
0(𝜉), 𝜃⟩| ≥ 𝛾 := 𝜀

1
2 h−𝛿 (34)

holds for all 𝜃 ∈ Θ′
K , then the terms could be estimated by h𝛿n and our

construction works with K = 3M/𝛿. Here and below without any loss of
the generality we assume that 𝜀 ≥ h; so, in fact, h𝜗 ≥ 𝜀 ≥ h.

Indeed, if P = P(x , hD) has the symbol, satisfying

|D𝛼
𝜉 D

𝛽
x P| ≤ C𝛼𝛽𝛾

−1−|𝛼| ∀𝛼, 𝛽, (35)

then B ′ = 𝜀h−1[P,B] has a symbol, satisfying

|D𝛼
𝜉 D

𝛽
x B

′| ≤ c ′𝛼𝛽𝜀𝛾
−2−|𝛼| ∀𝛼, 𝛽, (36)

so indeed 𝜀′ = 𝜀h−1𝛾−2.
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construction works with K = 3M/𝛿. Here and below without any loss of
the generality we assume that 𝜀 ≥ h; so, in fact, h𝜗 ≥ 𝜀 ≥ h.

Indeed, if P = P(x , hD) has the symbol, satisfying

|D𝛼
𝜉 D

𝛽
x P| ≤ C𝛼𝛽𝛾

−1−|𝛼| ∀𝛼, 𝛽, (35)

then B ′ = 𝜀h−1[P,B] has a symbol, satisfying

|D𝛼
𝜉 D

𝛽
x B

′| ≤ c ′𝛼𝛽𝜀𝛾
−2−|𝛼| ∀𝛼, 𝛽, (36)

so indeed 𝜀′ = 𝜀h−1𝛾−2.
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Proof of the Main Theorem Non-resonant zone

Then we can eliminate a perturbation completely, save terms with the
frequency 0, both old and new. The set of 𝜉 satisfying (34) for all 𝜃 ∈ Θ′

K

we call non-resonant zone and denote by 𝒵. Thus, we arrive to

Proposition 8.

Let Q = Q(hD) with the symbol supported in 𝒵 ∩ Ω and satisfying

|D𝛼Qj | ≤ C𝛼h
−(1−𝜍)|𝛼| ∀𝛼. (37)

Then there exists a pseudo-differential operator P = P(x , hD) with the
symbol, satisfying (37) and such that(︀

e−i𝜀h−1PAe i𝜀h
−1P − A′′)︀Q ≡ 0 (38)

with

A′′ = A0(hD) + 𝜀B ′′
0 (hD) (39)

modulo operator from Hm to L2 with the operator norm O(h3M).
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Proof of the Main Theorem Non-resonant zone

Remark 9.

1 This proposition is similar to Lemma 9.3 of [PS3]. However, in
contrast to [PS1, PS2, PS3, MPS], after it is proven we do not write
asymptotic decomposition there, but simply prove that singularities
do not propagate with respect to 𝜉 there.

2 It is our second replacement of operator A; recall that the first one
was based on Condition (B), and now we ignore the remainder after
transformation, which is justified by Remark 6.

Then we arrive to

Proposition 10.

Let Qj = Qj(hD) with the symbols, satisfying (37) and let symbol of Q1

be supported in 𝒵 ∩ Ω. Let dist(supp(Q1), supp(Q2)) ≥ c𝛾. Then

‖Q2e
ih−1tAQ1‖ = O(h2M) as |t| ≤ T * = h−M . (40)
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Proof of the Main Theorem Resonant zone

Consider now resonant zone

Λ :=
⋃︁

𝜃∈Θ′
K∖0

Λ(𝜃), (41)

where Λ(𝜃) is the set of 𝜉, violating (34) for given 𝜃:

Λ(𝜃) = Λ𝛿(𝜃) := {𝜉 : |⟨∇𝜉A
0(𝜉), 𝜃⟩| ≥ 𝛾 = c𝜀

1
2 h−𝛿}. (42)
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Proof of the Main Theorem Resonant zone

Consider the easiest case d = 2 (in the trivial case d = 1 there is no
resonant zone). Due to assumption (16) for each 𝜃

mes1(Λ(𝜃) ∩ Σ𝜆) ≤ C𝛾. (43)

Note, #Θ′
K ≤ Ch−𝜎 due to Condition (C). Thus mes1(Λ ∩ Σ𝜆) ≤ 𝛾h−𝜎.

Recall, that 𝜎 > 0 is arbitrarily small.

Since due to Proposition 10, the propagation which starts in the
non-resonant zone 𝒵 remains there we conclude that the propagation
which is started in some connected component of the resonant zone also
remains there (in both cases, we change constant c in the definition of 𝛾).

Thus, ∇𝜉A
0(𝜉) does not change by more than 𝛾h−𝜎 and since 𝜎 ais

arbitrarily small we conclude that (40) also holds for Q1, supported in the
resonant zone. Therefore

Proposition 11.

Estimate (40) holds for all Q1, Q2 satisfying (37) and

dist(supp(Q1), supp(Q2)) ≥ 𝛾. (44)
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Proof of the Main Theorem Resonant zone

Consider case d ≥ 2. Due Conditions (A), (C) and (D) we can cover
Λ ∩ Ω𝜏 by Λ*,

Λ ∩ Ω𝜏 ⊂ Λ* =
⋃︁

1≤j≤d−1

Λ*
j , (45)

defined as

Let 𝜉 ∈ Ω𝜏 ; then 𝜉 ∈ Λ*
j iff there exist 𝜃1, . . . , 𝜃j ∈ Θ′

K which are linearly
independent and such that 𝜉 ∈ Λ𝛿j (𝜃k) for all k = 1, . . . , j ,

where 0 < 𝛿 = 𝛿1 < 𝛿2 < . . . < 𝛿d−1 are arbitrarily fixed and we chose
sufficiently small 𝜎 > 0 afterwards.

Further, due to Conditions (A), (C), (D) and (16) Λ*
d−1 ∩ Ω𝜏 could be

covered by no more than 𝛾d−1-vicinities of some points 𝜉𝜄, 𝜄 = 1, . . . , 𝜔g ,
g = g(d). Recall that Ω𝜏 := {𝜉 : |A0(𝜉)− 𝜏 | ≤ C0𝜀+ h1−𝜍}.
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Proof of the Main Theorem Resonant zone

Consider some connected component Ξ of Λ*
j . Let some point 𝜉 of it

belong to
⋂︀

1≤k≤j Λ𝛿j (𝜃k) ∩ Ω𝜏 with linearly independent 𝜃1, . . . , 𝜃j .
Observe that diam(

⋂︀
1≤k≤j Λ𝛿j (𝜃k) ∩ Ω) ≤ c𝛾j due to strong convexity

assumption (16). Then this set either intersects or does not intersect with
Λ*
j+1 ∩ Ω. In the former case we include it to Λ*

j+1 and exclude it from Λ*
j .

After we redefined Λ*
j we arrive to the following proposition:

Proposition 12.

Equation (45) still holds where now each connected component Ξ of Λ*
j

has the following properties:

1 diamΞ ≤ c𝛾j .

2 There exist linearly independent 𝜃1, . . . , 𝜃j ∈ Θ′
K , such that for each

𝜉 ∈ Ξ |⟨∇𝜉A
0(𝜉), 𝜃⟩| ≤ cj𝛾j for all 𝜃 ∈ V ∩ (Θ′

K ∖ 0) and
|⟨∇𝜉A

0(𝜉), 𝜃⟩| ≥ 𝜖j𝛾j+1 for all 𝜃 ∈ Θ′
K ∖V) with

V = span(𝜃1, . . . , 𝜃j).
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Proof of the Main Theorem Resonant zone

Now we generalize Proposition 8:

Proposition 13.

Let Q = Q(hD) with the symbol supported in the connected component Ξ
of Λ*

j , corresponding to subspace V, and satisfying (37). Then there exists
a pseudo-differential operator P = P(x , hD) with the symbol, satisfying
(35) and such that (︀

e−i𝜀h−1PAe i𝜀h
−1P − A′′)︀Q ≡ 0 (46)

modulo operator from Hm to L2 with the operator norm O(h3M), where
A′′ = A0 + 𝜀B ′′(x , hD), where B ′′ is an operator with Weyl symbol

B ′′(x , 𝜉) =
∑︁

𝜃∈Θ′
K∩V

bV,𝜃(𝜉)e
i⟨𝜃,x⟩. (47)
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Proof of the Main Theorem Resonant zone

Then we arrive to

Proposition 14.

Let Qj = Qj(hD) with the symbols, satisfying (37) and let symbol of Q1

be supported in Λ*
j .

Let dist(supp(Q1), supp(Q2)) ≥ C0𝛾j . Then ‖Q2e
ih−1tAQ1‖ = O(h2M) for

|t| ≤ T* = h−M .

Next we arrive to the following proposition:

Proposition 15.

Let Q1,Q2 satisfy (37) and supp(Q1) ⊂ Ω. Then for T* ≤ T ≤ T *

Ft→h−1𝜏

(︀
𝜒T (t)Q2xu(x , y , t)

tQ1y

)︀
= O(h2M). (48)
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Proof of the Main Theorem End of the proof

Now we conclude that

Ft→h−1𝜏

(︀
[𝜒̄T (t)− 𝜒̄T*(t)]Q2xu(x , y , t)

tQ1y

)︀⃒⃒
x=y

= O(h2M) (49)

and since

Ft→h−1𝜏

(︀
𝜒̄T (t)Q2xu(x , y , t)

tQ1y

)︀⃒⃒
x=y

=∑︁
0≤n≤M

𝜅′n(x , 𝜀)h
1−d+n + O(hM+1) (50)

holds for T = T*, it also holds for T = T *.

Finally, Hörmander’s Tauberian theorem implies Theorem 3.
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Generalizations and Discussion

Generalizations and Discussion

Remark 16.

1 One can generalize Theorem 3 to elliptic matrix operators, assuming
that eigenvalues of A0(𝜉) are simple and satisfy assumptions of this
theorem.

2 As d = 2 one can replace strong convexity condition (16) by much
weaker nondegeneracy assumption.
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Generalizations and Discussion

Remark 17.

1 One can generalize Theorem 3 to operators

A = A0(hD) + 𝜀V (x ,HD), (51)

where

|D𝛼
𝜉 D

𝛽
x V (x , 𝜉)| ≤ c𝛼𝛽(|𝜉|+ 1)m(|x |+ 1)−𝛿−|𝛽| ∀𝛼, 𝛽 ∀x , 𝜉 (52)

provided 𝜀 ≤ 𝜖0.

2 One can generalize Theorem 3 to operators

A = A0(hD) + 𝜀
(︀
B(x , hD) + V (x , hD)

)︀
, (53)

where B(x , hD) satisfies conditions of Theorem 3 and V satisfies
(52), and even for more general operators.
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Generalizations and Discussion

Remark 17.

1 One can generalize Theorem 3 to operators

A = A0(hD) + 𝜀V (x ,HD), (51)

where

|D𝛼
𝜉 D

𝛽
x V (x , 𝜉)| ≤ c𝛼𝛽(|𝜉|+ 1)m(|x |+ 1)−𝛿−|𝛽| ∀𝛼, 𝛽 ∀x , 𝜉 (52)

provided 𝜀 ≤ 𝜖0.
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Generalizations and Discussion Differentiability

Remark 18.

1 It also follows from Corollary 4 that

1

𝜈

[︁
Nh,𝜀(𝜏 +𝜈)−Nh,𝜀(𝜏)

]︁
=

1

𝜈

[︁
𝒩h,𝜀(𝜏 +𝜈)−𝒩h,𝜀(𝜏)

]︁
+O(h∞) (54)

provided 𝜈 ≥ hM , where 𝒩h,𝜀(𝜏) is the right-hand expression of (27).

2 The question remains, if (54) holds for smaller 𝜈, in particular, if it
holds in 𝜈 → 0 limit? If the latter holds, then

𝜕

𝜕𝜏
Nh,𝜀(𝜏) =

𝜕

𝜕𝜏
𝒩h,𝜀(𝜏) + O(h∞) (55)

and we call the left-hand expression the density of states.
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Generalizations and Discussion Differentiability

Remark 18 (Continued).

3 It definitely is not necessarily true, at least in dimension 1. From now
on we consider only asymptotics with respect to 𝜏 → +∞. Let
A = Δ+ V (x) with periodic V . It is well-known that for d = 1 and
generic periodic V all spectral gaps are open which contradicts to

𝜕

𝜕𝜏
N(𝜏) =

𝜕

𝜕𝜏
𝒩 (𝜏) + O(𝜏−∞). (56)

4 On the other hand, this objection does not work in case d ≥ 2 since
only several the lowest spectral gaps are open (Bethe-Sommerfeld
conjecture, proven in [PS]).
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Generalizations and Discussion Differentiability

Remark 18 (End).

5 Further, one can differentiate e(x , x , 𝜏2) if d ≥ 2 and V is compactly
supported.

6 Moreover, we can differentiate complete asymptotics of the
Birman-Schwinger spectral shift function

𝜉(𝜏) :=

∫︁ (︀
e(x , x , 𝜏2)− e0(x , x , 𝜏2)

)︀
dx ∼

∑︁
n≥0

𝜅̄n𝜏
−d+n, (57)

with

𝜅̄n :=

∫︁
(𝜅n(x)− 𝜅0n) dx , (58)

where e0(x , y , 𝜏) and 𝜅0n correspond to A0 = Δ. In the case of
A = Δ in the exterior of smooth, compact and non-trapping obstacle
and A0 = Δ in Rd such asymptotics was derived in [PP].
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