Etudes in Spectral Theory

Math Physics Seminar at Tel-Aviv University

Victor Ivrii

Department of Mathematics, University of Toronto

November 7, 2019
1. Distribution of Eigenvalues
 - Variational Methods
 - Tauberian Methods

2. Equidistribution of eigenfunctions

3. Can one hear the shape of the drum?

4. Nodal lines

5. Exotic spectra
 - Mixed spectra
 - Band spectra
 - Landau levels
 - Ten martini problem
I briefly describe five old but still actively explored problems of the Spectral Theory of Partial Differential Equations

1. How eigenvalues are distributed (where eigenvalues often mean squares of the frequencies in the mechanical or electromagnetic problems or energy levels in the quantum mechanics models) and the relation to the behaviour of the billiard trajectories.

2. Equidistribution of eigenfunctions and connection to ergodicity of billiard trajectories (a quantum quantum ergodicity and a classical quantum ergodicity).

3. Can one hear the shape of the drum?

4. Nodal lines and Chladni plates.

5. Strange spectra of quantum systems.
Spectrum of operator H (Spec(H)) we call the set of all $\lambda \in \mathbb{C}$, for which resolvent $(H - \lambda)^{-1}$ either does not exist or is an unbounded operator.
Spectrum of operator H ($\text{Spec}(H)$) we call the set of all $\lambda \in \mathbb{C}$, for which resolvent $(H - \lambda)^{-1}$ either does not exist or is an unbounded operator. For matrices (operators in the finite-dimensional space) spectrum is a set of eigenvalues, such as λ, that $(H - \lambda)u = 0$ for some $u \neq 0$ (which is called an eigenvector).
Spectrum of operator H ($\text{Spec}(H)$) we call the set of all $\lambda \in \mathbb{C}$, for which resolvent $(H - \lambda)^{-1}$ either does not exist or is an unbounded operator. For matrices (operators in the finite-dimensional space) spectrum is a set of eigenvalues, such λ, that $(H - \lambda)u = 0$ for some $u \neq 0$ (which is called an eigenvector). For operators (in the infinite dimensional space) the set of all eigenvalues is a **point spectrum**. There are other types of the spectrum.
Reminder

Spectrum of operator H ($\text{Spec}(H)$) we call the set of all $\lambda \in \mathbb{C}$, for which resolvent $(H - \lambda)^{-1}$ either does not exist or is an unbounded operator. For matrices (operators in the finite-dimensional space) spectrum is a set of **eigenvalues**, such λ, that $(H - \lambda)u = 0$ for some $u \neq 0$ (which is called an eigenvector). For operators (in the infinite dimensional space) the set of all eigenvalues is a **point spectrum**. There are other types of the spectrum. There are two classifications.
For operators in the Banach space there are:

1. **Point spectrum**—see above.

2. **Continuous spectrum**: \(\lambda \) is not an eigenvalue, the range of \((H - \lambda) \) is dense, but \((H - \lambda)^{-1} \) is an unbounded operator.

3. **Residue spectrum**—the rest: i.e. \(\lambda \) is not an eigenvalue, and the range of \((H - \lambda) \) is not dense.

However, we are interested in the different classification for self-adjoint operators in the Hilbert space. Point spectrum is defined in the same way, residue spectrum is empty, but continuous spectrum is defined differently and there are two types of it.
General classification

For operators in the Banach space there are

1. **Point spectrum**—see above.

2. **Continuous spectrum**: λ is not an eigenvalue, the range of $(H - \lambda)$ is dense, but $(H - \lambda)^{-1}$ is an unbounded operator.
General classification

For operators in the Banach space there are

1. **Point spectrum**—see above.

2. **Continuous spectrum**: λ is not an eigenvalue, the range of $(H - \lambda)$ is dense, but $(H - \lambda)^{-1}$ is an unbounded operator.

3. **Residue spectrum**—the rest: i.e. λ is not an eigenvalue, and the range of $(H - \lambda)$ is not dense.
General classification

For operators in the Banach space there are

1. **Point spectrum**—see above.

2. **Continuous spectrum**: \(\lambda \) is not an eigenvalue, the range of \((H - \lambda)\) is dense, but \((H - \lambda)^{-1}\) is an unbounded operator.

3. **Residue spectrum**—the rest: i.e. \(\lambda \) is not an eigenvalue, and the range of \((H - \lambda)\) is not dense.

However we are interested in the different classification—for self-adjoint operators in the Hilbert space.
General classification

For operators in the Banach space there are

1. **Point spectrum**—see above.

2. **Continuous spectrum**: \(\lambda \) is not an eigenvalue, the range of \((H - \lambda)\) is dense, but \((H - \lambda)^{-1}\) is an unbounded operator.

3. **Residue spectrum**—the rest: i.e. \(\lambda \) is not an eigenvalue, and the range of \((H - \lambda)\) is not dense.

However we are interested in the different classification—for self-adjoint operators in the Hilbert space. Point spectrum is defined in the same way, residue spectrum is empty, but continuous spectrum is defined differently and there are two types of it.
Classification for self-adjoint operators

For self-adjoint operators in the Hilbert space there is a spectral decomposition: a family of orthogonal spectral projectors $E(\lambda)$, s.t. $E(\lambda)E(\lambda') = E(\lambda')$ for $\lambda' < \lambda$.
Classification for self-adjoint operators

For self-adjoint operators in the Hilbert space there is a spectral decomposition: a family of orthogonal spectral projectors $E(\lambda)$, s.t. $E(\lambda)E(\lambda') = E(\lambda')$ for $\lambda' < \lambda$, $E(-\infty) = 0$, $E(\infty) = I$, $E(\lambda)$ is semi-continuous from the left, i.e. $E(\lambda^-) = E(\lambda)$, and

$$\int \lambda d\lambda E(\lambda) = H.$$
Furthermore, Hilbert space H is decomposed into a direct sum $H = H_{pp} \oplus H_{ac} \oplus H_{sc}$, s.t. projectors $E(\lambda)$ maps each of them into itself, then operator H is decomposed into a direct sum $H = H_p \oplus H_{ac} \oplus H_{sc}$, and restriction of $E(\lambda)$ to H_{pp}, H_{ac} and H_{sc} is an atomic measure, absolutely continuous measure and singular continuous measure respectively. Then the spectra of operators H_{ac} and H_{sc} is called absolutely continuous spectrum and singular continuous spectrum of operator H respectively. Continuous spectrum is an union of the absolutely continuous and singular continuous spectra. And the spectrum of H_{pp} is a closure of the set of eigenvalues (which is not necessarily closed). We call it (not universally accepted) purely point spectrum.
Furthermore, Hilbert space H is decomposed into a direct sum $H = H_{pp} \oplus H_{ac} \oplus H_{sc}$, s.t. projectors $E(\lambda)$ maps each of them into itself, then operator H is decomposed into a direct sum $H = H_p \oplus H_{ac} \oplus H_{sc}$, and restriction of $E(\lambda)$ to H_{pp}, H_{ac} and H_{sc} is an atomic measure, absolutely continuous measure and singular continuous measure respectively.

Then the spectra of operators H_{ac} and H_{sc} is called absolutely continuous spectrum and singular continuous spectrum of operator H respectively. Continuous spectrum is an union of the absolutely continuous and singular continuous spectra. And the spectrum of H_{pp} is a closure of the set of eigenvalues (which is not necessarily closed). We call it (not universally accepted) purely point spectrum.
Furthermore, Hilbert space H is decomposed into a direct sum $H = H_{pp} \oplus H_{ac} \oplus H_{sc}$, s.t. projectors $E(\lambda)$ maps each of them into itself, then operator H is decomposed into a direct sum $H = H_p \oplus H_{ac} \oplus H_{sc}$, and restriction of $E(\lambda)$ to H_{pp}, H_{ac} and H_{sc} is an atomic measure, absolutely continuous measure and singular continuous measure respectively.

Then the spectra of operators H_{ac} and H_{sc} is called absolutely continuous spectrum and singular continuous spectrum of operator H respectively. Continuous spectrum is an union of the absolutely continuous and singular continuous spectra.
Furthermore, Hilbert space H is decomposed into a direct sum $H = H_{pp} \oplus H_{ac} \oplus H_{sc}$, s.t. projectors $E(\lambda)$ maps each of them into itself, then operator H is decomposed into a direct sum $H = H_p \oplus H_{ac} \oplus H_{sc}$, and restriction of $E(\lambda)$ to H_{pp}, H_{ac} and H_{sc} is an atomic measure, absolutely continuous measure and singular continuous measure respectively.

Then the spectra of operators H_{ac} and H_{sc} is called absolutely continuous spectrum and singular continuous spectrum of operator H respectively. Continuous spectrum is an union of the absolutely continuous and singular continuous spectra.

And the spectrum of H_{pp} is a closure of the set of eigenvalues (which is not necessarily closed). We call it (not universally accepted) purely point spectrum.
So, each spectrum is a closed set and the different spectra may overlap.
So, each spectrum is a closed set and the different spectra may overlap.

The definition of the multiplicity of the eigenvalue is wide-known (the dimension of the corresponding eigenspace) and one can define the multiplicity of the absolutely continuous spectrum.
So, each spectrum is a closed set and the different spectra may overlap.

The definition of the multiplicity of the eigenvalue is wide-known (the dimension of the corresponding eigenspace) and one can define the multiplicity of the absolutely continuous spectrum. **Discrete spectrum** of operator H is a set of its eigenvalues of the finite multiplicity, which are isolated from the rest of the spectrum.
So, each spectrum is a closed set and the different spectra may overlap.

The definition of the multiplicity of the eigenvalue is wide-known (the dimension of the corresponding eigenspace) and one can define the multiplicity of the absolutely continuous spectrum. **Discrete spectrum** of operator H is a set of its eigenvalues of the finite multiplicity, which are isolated from the rest of the spectrum. The remaining spectrum (eigenvalues of the infinite multiplicity, accumulation points of the point spectrum, points of the continuous spectrum) make an **essential spectrum** of operator H.
In 1911 a 26-years old mathematician, a former student of David Hilbert, Hermann Weyl published a very important paper "Über die asymptotische Verteilung der Eigenwerte" (About the asymptotic distribution of eigenvalues), which followed by four more papers in 1912, 1913 and 1915.
In 1911 a 26-years old mathematician, a former student of David Hilbert, Hermann Weyl published a very important paper "Über die asymptotische Verteilung der Eigenwerte" (About the asymptotic distribution of eigenvalues), which followed by four more papers in 1912, 1913 and 1915.

In this paper he proved a formula, later called Weyl's Law, which was conjectured independently by Arnold Sommerfeld and Hendrik Lorentz in 1910.
In 1911 a 26-years old mathematician, a former student of David Hilbert, Hermann Weyl published a very important paper Über die asymptotische Verteilung der Eigenwerte (About the asymptotic distribution of eigenvalues), which followed by four more papers in 1912, 1913 and 1915.

In this paper he proved a formula, later called Weyl's Law, which was conjectured independently by Arnold Sommerfeld and Hendrik Lorentz in 1910.

According to the book of Lord Rayleigh The Theory of Sound (1887) eigenvalues were the squares of the frequencies; in the Quantum Mechanics (developed a bit later) eigenvalues were primarily the energy levels.
For Dirichlet Laplacian in a bounded d-dimensional domain Ω H.Weyl (1911) proved that

$$N(\lambda) = c_0 \mes(\Omega) \lambda^{\frac{d}{2}} + o(\lambda^{\frac{d}{2}})$$

as $\lambda \to +\infty$ and

$$N(\lambda) = c_0 \mes(\Omega) \lambda^{\frac{d}{2}} - c_1 \mes(\partial \Omega) \lambda^{\frac{d}{2} - 1} + o(\lambda^{\frac{d}{2} - 1})$$
For Dirichlet Laplacian in a bounded d-dimensional domain Ω H. Weyl (1911) proved that

$$N(\lambda) = c_0 \text{mes}(\Omega) \lambda^\frac{d}{2} + o(\lambda^\frac{d}{2})$$

as $\lambda \to +\infty$ and in 1913 conjectured that

$$N(\lambda) = c_0 \text{mes}(\Omega) \lambda^\frac{d}{2} \mp c_1 \text{mes}_{d-1}(\partial \Omega) \lambda^\frac{d-1}{2} + o(\lambda^\frac{d-1}{2}).$$

Definition 1

Here $N(\lambda)$ is a number of eigenvalues of Laplacian $-\Delta$, which are less than λ.
For Dirichlet Laplacian in a bounded d-dimensional domain Ω H.Weyl (1911) proved that

$$N(\lambda) = c_0 \operatorname{mes}(\Omega)\lambda^{\frac{d}{2}} + o(\lambda^{\frac{d}{2}})$$ \hspace{1cm} (1)$$

as $\lambda \to +\infty$ and in 1913 conjectured that

$$N(\lambda) = c_0 \operatorname{mes}(\Omega)\lambda^{\frac{d}{2}} \mp c_1 \operatorname{mes}_{d-1}(\partial \Omega)\lambda^{\frac{d-1}{2}} + o(\lambda^{\frac{d-1}{2}}).$$ \hspace{1cm} (2)$$

Definition 1

Here $N(\lambda)$ is a number of eigenvalues of Laplacian $-\Delta$, which are less than λ.

In this framework eigenvalue is the non-trivial solution to the equation

$$-\Delta \psi_n := -\left(\partial_{x_1}^2 + \partial_{x_2}^2 + \ldots + \partial_{x_d}^2\right)\psi_n = \lambda_n \psi_n,$$ \hspace{1cm} (3)$$

satisfying the boundary conditions (Dirichlet or Neumann).
To explain (1) consider a rectangular box of the size $a_1 \times a_2$ (for a simplicity we take $d = 2$). Then the eigenvalue problem could be solved easily by the separation of the variables
To explain (1) consider a rectangular box of the size $a_1 \times a_2$ (for a simplicity we take $d = 2$). Then the eigenvalue problem could be solved easily by the separation of the variables and $N(\lambda)$ equals to the number of integer points in the domain

$$
\Theta = \{(m_1, m_2) \in \mathbb{Z}^+^2, \frac{m_1^2}{a_1^2} + \frac{m_2^2}{a_2^2} < \frac{\lambda}{\pi^2}\},
$$

which should be approximately equal to the volume of the domain Θ (which is $1/4$ of the ellipse with semiaxis $\pi - 1 \lambda^{1/2} a_1$, $\pi - 1 \lambda^{1/2} a_2$) i.e.

$$
\omega_d^2 (2\pi)^d - 1 \lambda d^2 \text{mes}(\Omega) = \omega_d^2 (2\pi)^d - 2 \lambda d^2 \text{mes}(\Omega),
$$

which would be exactly the first term in (1). Here and below ω_d is a volume of the unit ball in \mathbb{R}^d.
To explain (1) consider a rectangular box of the size $a_1 \times a_2$ (for a simplicity we take $d = 2$). Then the eigenvalue problem could be solved easily by the separation of the variables and $N(\lambda)$ equals to the number of integer points in the domain

$$\Theta = \{ (m_1, m_2) \in \mathbb{Z}^+ \times 2, \frac{m_1^2}{a_1^2} + \frac{m_2^2}{a_2^2} < \frac{\lambda}{\pi^2} \} \quad (4)$$

which should be approximately equal to the volume of the domain Θ (which is $1/4$ of the ellipse with semiaxis $\pi^{-1} \lambda^\frac{1}{2} a_1, \pi^{-1} \lambda^\frac{1}{2} a_2$) i.e.

$$\omega_2 (2\pi)^{-1} \lambda^\frac{1}{2} a_1 \times (2\pi)^{-1} \lambda^\frac{1}{2} a_2 = \omega_2 (2\pi)^{-2} \lambda^\frac{d}{2} \text{mes}(\Omega),$$

$$\text{mes}(\Omega) = a_1 a_2,$$
To explain (1) consider a rectangular box of the size \(a_1 \times a_2 \) (for a simplicity we take \(d = 2 \)). Then the eigenvalue problem could be solved easily by the separation of the variables and \(N(\lambda) \) equals to the number of integer points in the domain

\[
\Theta = \left\{ (m_1, m_2) \in \mathbb{Z}^+^2, \frac{m_1^2}{a_1^2} + \frac{m_2^2}{a_2^2} < \frac{\lambda}{\pi^2} \right\}, \tag{4}
\]

which should be approximately equal to the volume of the domain \(\Theta \) (which is 1/4 of the ellipse with semiaxis \(\pi^{-1}\lambda^{1/2}a_1, \pi^{-1}\lambda^{1/2}a_2 \)) i.e.

\[
\omega_2 (2\pi)^{-1}\lambda^{1/2}a_1 \times (2\pi)^{-1}\lambda^{1/2}a_2 = \\
\omega_2 (2\pi)^{-2}\lambda^{d/2} \text{mes}(\Omega),
\]

\[
\text{mes}(\Omega) = a_1a_2,
\]

which would be exactly the first term in (1). Here and below \(\omega_d \) is a volume of the unit ball in \(\mathbb{R}^d \).
Weyl conjecture (2) was the result of a more precise analysis of the same problem: for Dirichlet boundary condition we do not count points with \(m_i = 0 \) (blue) and for Neumann problem we count them, so in (2) will be “−” for Dirichlet, and “+” for Neumann, \(c_1 = \frac{1}{4} (2\pi)^{1-d} \omega_{d-1} \).
The proof of (1) by Weyl was based on this formula for boxes, integral equations and variational arguments he invented. Those arguments are based on the formula

$$N(\lambda) = \max \dim \mathcal{L},$$

(5)

where \mathcal{L} runs over all subspaces of \mathcal{H} on which quadratic form $\|\nabla u\|^2 - \lambda \|u\|^2$ is negative and \mathcal{H} is Sobolev space $H^1(\Omega)$ in the case of Neumann boundary problem and $H^1_0(\Omega) = \{ u \in H^1(\Omega), u|_{\partial\Omega} = 0 \}$ in the case of Dirichlet boundary problem.
The proof of (1) by Weyl was based on this formula for boxes, integral equations and variational arguments he invented. Those arguments are based on the formula

$$N(\lambda) = \max \dim \mathcal{L},$$

where \mathcal{L} runs over all subspaces of \mathcal{H} on which quadratic form $\| \nabla u \|^2 - \lambda \| u \|^2$ is negative and \mathcal{H} is Sobolev space $H^1(\Omega)$ in the case of Neumann boundary problem and $H^1_0(\Omega) = \{ u \in H^1(\Omega), u|_{\partial \Omega} = 0 \}$ in the case of Dirichlet boundary problem.

Using this formula, corresponding expression for boxes and a partition of the domain Ω into boxes Weyl proved (1).
The proof of (1) by Weyl was based on this formula for boxes, integral equations and variational arguments he invented. Those arguments are based on the formula

\[N(\lambda) = \max \dim \mathcal{L}, \quad (5) \]

where \(\mathcal{L} \) runs over all subspaces of \(\mathcal{H} \) on which quadratic form \(\| \nabla u \|^2 - \lambda \| u \|^2 \) is negative and \(\mathcal{H} \) is Sobolev space \(H^1(\Omega) \) in the case of Neumann boundary problem and \(H^1_0(\Omega) = \{ u \in H^1(\Omega), u|_{\partial\Omega} = 0 \} \) in the case of Dirichlet boundary problem.

Using this formula, corresponding expression for boxes and a partition of the domain \(\Omega \) into boxes Weyl proved (1).

Richard Courant in 1920, pushing this method to its limits proved remainder estimate to \(O(\lambda \frac{d-1}{2} \log \lambda) \) for bounded domains with \(\mathcal{C}^\infty \) boundary.

Actually both H. Weyl and R. Courant considered only \(d = 2, 3 \).
In sixties and after this variational methods were perfected by Michael Birman and Michael Solomyak (working mainly together), and by many of their students (most notably by Grigori Rozenblioum).
In sixties and after this variational methods were perfected by Michael Birman and Michael Solomyak (working mainly together), and by many of their students (most notably by Grigori Rozenbliuom) and by Elliott Lieb, and Barry Simon and by their students.
In sixties and after this variational methods were perfected by Michael Birman and Michael Solomyak (working mainly together), and by many of their students (most notably by Grigori Rozenbloum) and by Elliott Lieb, and Barry Simon and by their students. In these papers much more general problems were considered and much more subtle arguments were applied.
In sixties and after this variational methods were perfected by Michael Birman and Michael Solomyak (working mainly together), and by many of their students (most notably by Grigori Rozenblioum) and by Elliott Lieb, and Barry Simon and by their students.

In these papers much more general problems were considered and much more subtle arguments were applied. However these methods were not sufficient to prove even $O(\lambda^{(d-1)/2})$ remainder estimate, leave alone Weyl’s conjecture.
Tauberian Methods

In 1935 and 1936 Torsten Carleman invented very different approach.

Torsten Carleman
Tauberian Methods

In 1935 and 1936 Torsten Carleman invented very different approach. Let us consider some function of the operator and a parameter \(f(-\Delta, t) \) such that its Schwartz kernel (i.e. integral kernel) \(u(x, y, t) \) could be constructed by methods of partial differential equations.

\[
\text{Tr}(f(-\Delta, t)) = \int u(x, x, t) \, dx.
\]

On the other hand, it is related to \(N(\lambda) \) by

\[
\text{Tr}(f(-\Delta, t)) = \int f(\lambda, t) \, d\lambda \, N(\lambda).
\]
Tauberian Methods

In 1935 and 1936 Torsten Carleman invented very different approach. Let us consider some function of the operator and a parameter \(f(-\Delta, t) \) such that its Schwartz kernel (i.e. integral kernel) \(u(x, y, t) \) could be constructed by methods of partial differential equations. Then the trace of \(f(-\Delta, t) \) could be expressed as

\[
\text{Tr}(f(-\Delta, t)) = \int u(x, x, t) \, dx. \tag{6}
\]

On the other hand, it is related to \(N(\lambda) \) by

\[
\text{Tr}(f(-\Delta, t)) = \int f(\lambda, t) \, d\lambda N(\lambda). \tag{7}
\]
Tauberian Methods

In 1935 and 1936 Torsten Carleman invented very different approach. Let us consider some function of the operator and a parameter $f(-\Delta, t)$ such that its Schwartz kernel (i.e. integral kernel) $u(x, y, t)$ could be constructed by methods of partial differential equations. Then the trace of $f(-\Delta, t)$ could be expressed as

$$\text{Tr}(f(-\Delta, t)) = \int u(x, x, t) \, dx. \quad (6)$$

On the other hand, it is related to $N(\lambda)$ by

$$\text{Tr}(f(-\Delta, t)) = \int f(\lambda, t) \, d\lambda \, N(\lambda). \quad (7)$$
Then, calculating this trace by (6) we know the integral transform of $N(\lambda)$,
Then, calculating this trace by (6) we know the integral transform of \(N(\lambda) \), and knowing that \(N(\lambda) \) is a monotone non-decreasing function of \(\lambda \), allows us to recover \(N(\lambda) \) with some error.
Then, calculating this trace by (6) we know the integral transform of \(N(\lambda) \), and knowing that \(N(\lambda) \) is a monotone non-decreasing function of \(\lambda \), allows us to recover \(N(\lambda) \) with some error.

Since such theorems, helping us to partially recover a function from its integral transform are called Tauberian theorems, the method, invented by Carleman is called **Tauberian method**.
Then, calculating this trace by (6) we know the integral transform of $N(\lambda)$, and knowing that $N(\lambda)$ is a monotone non-decreasing function of λ, allows us to recover $N(\lambda)$ with some error. Since such theorems, helping us to partially recover a function from its integral transform are called Tauberian theorems, the method, invented by Carleman is called Tauberian method. Actually, there are different Tauberian methods, depending on the choice of the function f.

One of the popular choices is $f(-\Delta, t) = e^{t\Delta}$; then u is a fundamental solution to heat equation, i.e.

$$u_t = \Delta u,$$

(8)

$$u|_{t=0} = \delta(x - y).$$

(9)

So, we have heat equation method. Such function $u(x, y, t)$ is easy to construct but it is very difficult to prove a good remainder estimate from Laplace transform $\sigma(t) := \int e^{-\lambda t} d\lambda N(\lambda)$.

(10)
Then, calculating this trace by (6) we know the integral transform of $N(\lambda)$, and knowing that $N(\lambda)$ is a monotone non-decreasing function of λ, allows us to recover $N(\lambda)$ with some error. Since such theorems, helping us to partially recover a function from its integral transform are called Tauberian theorems, the method, invented by Carleman is called Tauberian method. Actually, there are different Tauberian methods, depending on the choice of the function f. One of the popular choices is $f(-\Delta, t) = e^{t\Delta}$; then u is a fundamental solution to heat equation, i.e.

\[u_t = \Delta_x u, \quad (8) \]
\[u|_{t=0} = \delta(x - y). \quad (9) \]
Then, calculating this trace by (6) we know the integral transform of $N(\lambda)$, and knowing that $N(\lambda)$ is a monotone non-decreasing function of λ, allows us to recover $N(\lambda)$ with some error.

Since such theorems, helping us to partially recover a function from its integral transform are called Tauberian theorems, the method, invented by Carleman is called Tauberian method.

Actually, there are different Tauberian methods, depending on the choice of the function f.

One of the popular choices is $f(-\Delta, t) = e^{t\Delta}$; then u is a fundamental solution to heat equation, i.e.

$$u_t = \Delta_x u,$$ \hspace{1cm} (8)

$$u|_{t=0} = \delta(x - y).$$ \hspace{1cm} (9)

So, we have heat equation method.
Then, calculating this trace by (6) we know the integral transform of $N(\lambda)$, and knowing that $N(\lambda)$ is a monotone non-decreasing function of λ, allows us to recover $N(\lambda)$ with some error.

Since such theorems, helping us to partially recover a function from its integral transform are called Tauberian theorems, the method, invented by Carleman is called **Tauberian method**.

Actually, there are different Tauberian methods, depending on the choice of the function f.

One of the popular choices is $f(-\Delta, t) = e^{t \Delta}$; then u is a fundamental solution to heat equation, i.e.

$$u_t = \Delta_x u, \quad (8)$$

$$u|_{t=0} = \delta(x - y). \quad (9)$$

So, we have **heat equation method**. Such function $u(x, y, t)$ is easy to construct.
Then, calculating this trace by (6) we know the integral transform of $N(\lambda)$, and knowing that $N(\lambda)$ is a monotone non-decreasing function of λ, allows us to recover $N(\lambda)$ with some error.

Since such theorems, helping us to partially recover a function from its integral transform are called Tauberian theorems, the method, invented by Carleman is called Tauberian method.

Actually, there are different Tauberian methods, depending on the choice of the function f.

One of the popular choices is $f(-\Delta, t) = e^{t\Delta}$; then u is a fundamental solution to heat equation, i.e.

$$u_t = \Delta_x u, \quad (8)$$
$$u\big|_{t=0} = \delta(x - y). \quad (9)$$

So, we have heat equation method. Such function $u(x, y, t)$ is easy to construct but it is very difficult to prove a good remainder estimate from Laplace transform

$$\sigma(t) := \int e^{-\lambda t} d\lambda N(\lambda). \quad (10)$$
In 1952 Boris Levitan invented hyperbolic operator method. He considered \(f(-\Delta, t) = \cos(t\sqrt{-\Delta}) \).
In 1952 Boris Levitan invented **hyperbolic operator method**. He considered $f(-\Delta, t) = \cos(t\sqrt{-\Delta})$. Then $u(x, y, t)$ is a fundamental solution to wave equation

\begin{align*}
 u_{tt} &= \Delta_x u, \\
 u\big|_{t=0} &= \delta(x - y), \quad u_t\big|_{t=0} = 0.
\end{align*}

(11) \hspace{1cm} (12)

Boris Levitan
In 1952 Boris Levitan invented hyperbolic operator method. He considered \(f(-\Delta, t) = \cos(t\sqrt{-\Delta}) \).

Then \(u(x, y, t) \) is a fundamental solution to wave equation

\[
\begin{align*}
 u_{tt} &= \Delta_x u, \\
 u\big|_{t=0} &= \delta(x - y), \quad u_t\big|_{t=0} = 0.
\end{align*}
\]

(11) (12)

and we need to recover \(N(\lambda) \) from the (cos)-Fourier transform

\[
\sigma(t) := \int \cos(\lambda t)d_\lambda N(\lambda^2).
\]

(13)
In 1952 Boris Levitan invented hyperbolic operator method. He considered \(f(-\Delta, t) = \cos(t\sqrt{-\Delta}) \).

Then \(u(x, y, t) \) is a fundamental solution to wave equation

\[
\begin{align*}
 u_{tt} & = \Delta_x u, \\
 u|_{t=0} & = \delta(x - y), \quad u_t|_{t=0} = 0.
\end{align*}
\]

(11) (12)

and we need to recover \(N(\lambda) \) from the (cos)-Fourier transform

\[
\sigma(t) := \int \cos(\lambda t) d\lambda N(\lambda^2).
\]

(13)

In this case the recovery part is easy, and one can get a good remainder estimate, but the PDE part is difficult near the border or for large \(t \).
In 1952 Boris Levitan invented hyperbolic operator method. He considered \(f(-\Delta, t) = \cos(t\sqrt{-\Delta}) \).

Then \(u(x, y, t) \) is a fundamental solution to wave equation

\[
\begin{align*}
 u_{tt} &= \Delta_x u, \quad (11) \\
 u|_{t=0} &= \delta(x - y), \quad u_t|_{t=0} = 0. \quad (12)
\end{align*}
\]

and we need to recover \(N(\lambda) \) from the (cos)-Fourier transform

\[
\sigma(t) := \int \cos(\lambda t) d\lambda N(\lambda^2). \quad (13)
\]

In this case the recovery part is easy, and one can get a good remainder estimate, but the PDE part is difficult near the border or for large \(t \).

Using construction for \(|t| \leq T \) with some constant \(> 0 \) Levitan recovered remainder estimate \(O(\lambda^{(d-1)/2}) \) for compact closed manifolds (closed = without the boundary).
In 1968 Lars Hörmander, using hyperbolic operator method and the new technique of Microlocal Analysis, recovered remainder estimate $O(\lambda^{(d-1)/2})$ for more general operators on compact closed manifolds.
In 1968 Lars Hörmander, using hyperbolic operator method and the new technique of Microlocal Analysis, recovered remainder estimate $O(\lambda^{(d-1)/2})$ for more general operators on compact closed manifolds.

However estimate $o(\lambda^{(d-1)/2})$ may fail without some additional condition.
In 1968 Lars Hörmander, using hyperbolic operator method and the new technique of Microlocal Analysis, recovered remainder estimate $O(\lambda^{(d-1)/2})$ for more general operators on compact closed manifolds.

However estimate $o(\lambda^{(d-1)/2})$ may fail without some additional condition. Indeed, consider Laplace operator on the sphere S^d, for $d = 2$. Then eigenvalues are $\lambda_m = m(m + 1)/2$ of multiplicity $2m + 1 \asymp \lambda_m^{1/2}$ and we cannot get a remainder estimate better than $O(\lambda^{(d-1)/2})$, and the same is true for any dimension.
In 1975 J. J. Duistermaat and Victor Guillemin, using hyperbolic operator method and Microlocal Analysis recovered remainder estimate $o(\lambda^{(d-1)/2})$ for operators on compact closed manifolds, under geometric condition, preventing high degeneration of eigenvalues.
In 1975 J. J. Duistermaat and Victor Guillemin, using hyperbolic operator method and Microlocal Analysis recovered remainder estimate $o(\lambda^{(d-1)/2})$ for operators on compact closed manifolds, under geometric condition, preventing high degeneration of eigenvalues.

This condition, for the Laplace operator was

Non-periodicity condition

The measure of the set all periodic geodesics is zero.
In 1975 J. J. Duistermaat and Victor Guillemin, using hyperbolic operator method and Microlocal Analysis recovered remainder estimate $o(\lambda^{(d-1)/2})$ for operators on compact closed manifolds, under geometric condition, preventing high degeneration of eigenvalues.

This condition, for the Laplace operator was

Non-periodicity condition

The measure of the set all periodic geodesics is zero.

Geodesics could be marked by their initial points and directions, which are elements of the phase space, and there is a standard volume measure on the phase space.
In 1975 J. J. Duistermaat and Victor Guillemin, using hyperbolic operator method and Microlocal Analysis recovered remainder estimate \(o(\lambda^{(d-1)/2}) \) for operators on compact closed manifolds, under geometric condition, preventing high degeneration of eigenvalues.

This condition, for the Laplace operator was

Non-periodicity condition

The measure of the set all periodic geodesics is zero.

Geodesics could be marked by their initial points and directions, which are elements of the phase space, and there is a standard volume measure on the phase space. On the sphere all geodesics (large circles) are periodic, but there are other manifolds (f.e. Zoll-Tanner manifolds) with the same property.
The result of J. J. Duistermaat and Victor Guillemin is remarkable, because it connects the spectral properties of operator (quantum property) and the non-periodicity properties of the Hamiltonian (in this case geodesic flow) Ψ_t (classical property).
The result of J. J. Duistermaat and Victor Guillemin is remarkable, because it connects the spectral properties of operator (quantum property) and the non-periodicity properties of the Hamiltonian (in this case geodesic flow) Ψ_t (classical property). But what about sharp remainder estimate for manifolds (or domains) with the boundary? It is coming!
In 1978 Robert Seeley proved remainder estimate $O(\lambda^{(d-1)/2})$ for compact domains (generalization to manifolds with the boundary was easy).
In 1978 Robert Seeley proved remainder estimate $O(\lambda^{(d-1)/2})$ for compact domains (generalization to manifolds with the boundary was easy). He did not construct explicitly $u(x, y, t)$ near the border for the wave equation in the general case (and nobody did so far!) but he invented some kind of the short dynamics arguments which allowed him to get around this obstacle rather than overcome it.
In 1979 I proved the Weyl’s conjecture, recovering remainder estimate $o(\lambda^{(d-1)/2})$ for compact manifolds with the boundary.
In 1979 I proved the Weyl’s conjecture, recovering remainder estimate $o(\lambda^{(d-1)/2})$ for compact manifolds with the boundary. I also used the microlocal analysis, short dynamics arguments (but very different from those of Seeley) and long dynamics arguments, similar to those of Duistermaat and Guillemin.
In 1979 I proved the Weyl’s conjecture, recovering remainder estimate \(o(\lambda^{(d-1)/2}) \) for compact manifolds with the boundary. I also used the microlocal analysis, short dynamics arguments (but very different from those of Seeley) and long dynamics arguments, similar to those of Duistermaat and Guillemin. Sure, there was a new

Non-periodicity condition

The measure of the set all periodic geodesic billiard trajectories is zero.
In 1979 I proved the Weyl’s conjecture, recovering remainder estimate $o(\lambda^{(d-1)/2})$ for compact manifolds with the boundary. I also used the microlocal analysis, short dynamics arguments (but very different from those of Seeley) and long dynamics arguments, similar to those of Duistermaat and Guillemin. Sure, there was a new

Non-periodicity condition

The measure of the set all periodic geodesic billiard trajectories is zero.

Geodesic billiard trajectories consist of segments of geodesics, which reflect from the boundary according to geometric optics law reflection angle = incidence angle.
In 1979 I proved the Weyl’s conjecture, recovering remainder estimate $o(\lambda^{(d-1)/2})$ for compact manifolds with the boundary. I also used the microlocal analysis, short dynamics arguments (but very different from those of Seeley) and long dynamics arguments, similar to those of Duistermaat and Guillemin. Sure, there was a new

Non-periodicity condition

The measure of the set all periodic geodesic billiard trajectories is zero.

Geodesic billiard trajectories consist of segments of geodesics, which reflect from the boundary according to geometric optics law reflection angle = incidence angle. However, billiard flow is much more complicated than the geodesic flow: billiards can behave badly, to be tangent to the boundary, or to make infinitely many jumps for a finite time. Points of the phase space, starting from each billiards behave badly (for positive or negative time) are called dead-end points.
In 1979 I proved the Weyl’s conjecture, recovering remainder estimate \(o(\lambda^{(d-1)/2}) \) for compact manifolds with the boundary. I also used the microlocal analysis, short dynamics arguments (but very different from those of Seeley) and long dynamics arguments, similar to those of Duistermaat and Guillemin. Sure, there was a new

Non-periodicity condition

The measure of the set all periodic geodesic billiard trajectories is zero.

Geodesic billiard trajectories consist of segments of geodesics, which reflect from the boundary according to geometric optics law reflection angle = incidence angle. However, billiard flow is much more complicated than the geodesic flow: billiards can behave badly, to be tangent to the boundary, or to make infinitely many jumps for a finite time. Points of the phase space, starting from each billiards behave badly (for positive or negative time) are called **dead-end points**. Luckily, the set of all dead-end points has measure zero.
In 1980 I conjectured that the non-periodicity condition holds for general Euclidean domains. Now this conjecture is considered as one of the most difficult problems of the mathematical billiards theory.
In 1980 I conjectured that the non-periodicity condition holds for general Euclidean domains. Now this conjecture is considered as one of the most difficult problems of the mathematical billiards theory. It was proven for generic Euclidean domains and also for some special classes of domains.
In 1980 I conjectured that the non-periodicity condition holds for general Euclidean domains. Now this conjecture is considered as one of the most difficult problems of the mathematical billiards theory.

It was proven for generic Euclidean domains and also for some special classes of domains.

If you are interested in this topic (and in the further developments—and there were a lot!), you can find more in my talk 100 years of Weyl’s law and in my article, also called 100 years of Weyl’s law.
In 1974 Alexander Shnirelman began to study the equidistribution of eigenfunctions (of the Laplacian on the closed manifold). Recall that eigenfunctions are functions $\psi_n \neq 0$ such that

$$-\Delta \psi_n = \lambda_n \psi_n. \quad (3)$$
Equidistribution of eigenfunctions

In 1974 Alexander Shnirelman began to study the equidistribution of eigenfunctions (of the Laplacian on the closed manifold). Recall that eigenfunctions are functions $\psi_n \neq 0$ such that

$$-\Delta \psi_n = \lambda_n \psi_n. \quad (3)$$

Definition 2

Eigenfunctions are **equidistributed** if

$$\int_{\omega} |\psi_n|^2 \, dx \to \frac{\text{mes}(\omega)}{\text{mes}(\Omega)} \quad \text{as} \quad n \to \infty \quad (14)$$

for all n except those belonging to subsequence n_k of the density 0.
Subsequence n_k has density 0 if it becomes rarified on the long intervals:
$\#\{k : n_k \leq N\} = o(N)$ as $N \to \infty$.

Subsequence n_k has density 0 if it becomes rarified on the long intervals:
$\#\{k : n_k \leq N\} = o(N)$ as $N \to \infty$.
In fact, Shnirelman was interested in the stronger property:
equidistribution in the phase space (space of coordinates and momenta)
rather than in the configuration space (space of coordinates only).
Subsequence n_k has density 0 if it becomes rarified on the long intervals:
\[\# \{ k : n_k \leq N \} = o(N) \quad \text{as} \quad N \rightarrow \infty. \]

In fact, Shnirelman was interested in the stronger property: equidistribution in the phase space (space of coordinates and momenta) rather than in the configuration space (space of coordinates only).

It turned out that the equidistribution (which is now called \textit{quantum ergodicity}) is due to the ergodicity of the classical dynamical system, the study of quantizations of classically chaotic systems is sometimes called quantum chaos.
Recall that we have a geodesic flow Ψ_t. Due to Liouville’s theorem it preserves the volume of the phase space: $\text{mes}(\Psi_t(\omega)) = \text{mes}(\omega)$ for all t.

Definition 3
The flow Ψ_t is called ergodic if for almost all trajectories and all subsets ω of the phase space Ω (with $\text{mes}(\omega) > 0$) the time trajectory spends inside ω (if we consider time interval $[0, T]$), divided by T tends to $\text{mes}(\omega)/\text{mes}(\Omega)$ as $T \to +\infty$.

Almost all = except of measure zero.

One can say that ergodicity means that almost every trajectory forgets the past after a while.
Recall that we have a geodesic flow Ψ_t. Due to Liouville’s theorem it preserves the volume of the phase space: $\text{mes}(\Psi_t(\omega)) = \text{mes}(\omega)$ for all t.

Definition 3

The flow Ψ_t is called **ergodic** if for almost all trajectories and all subsets ω of the phase space Ω (with $\text{mes}(\omega) > 0$) the time trajectory spends inside ω (if we consider time interval $[0, T]$), divided by T tends to $\text{mes}(\omega)/\text{mes}(\Omega)$ as $T \to +\infty$.

Almost all = except of measure zero.
Recall that we have a geodesic flow Ψ_t. Due to Liouville’s theorem it preserves the volume of the phase space: $\operatorname{mes}(\Psi_t(\omega)) = \operatorname{mes}(\omega)$ for all t.

Definition 3

The flow Ψ_t is called **ergodic** if for almost all trajectories and all subsets ω of the phase space Ω (with $\operatorname{mes}(\omega) > 0$) the time trajectory spends inside ω (if we consider time interval $[0, T]$), divided by T tends to $\operatorname{mes}(\omega)/\operatorname{mes}(\Omega)$ as $T \to +\infty$.

Almost all = except of measure zero.

One can say that ergodicity means that almost every trajectory forgets the past after a while.
Ergodicity has been a popular topic of the research and now the equidistribution also is. Since the above result has been generalized to manifolds with the boundary:

Ergodicity and equidistribution

Ergodicity of the geodesic billiard flow \implies equidistribution of the eigenfunctions
Ergodicity has been a popular topic of the research and now the equidistribution also is. Since the above result has been generalized to manifolds with the boundary:

Ergodicity and equidistribution

Ergodicity of the geodesic billiard flow \implies equidistribution of the eigenfunctions

and there is a little doubt that the converse result is also true,
Ergodicity has been a popular topic of the research and now the equidistribution also is. Since the above result has been generalized to manifolds with the boundary:

Ergodicity and equidistribution

Ergodicity of the geodesic billiard flow \implies equidistribution of the eigenfunctions

and there is a little doubt that the converse result is also true, let us consider ergodicity of the Euclidean billiards, and its relation to non-periodicity.
Obviously ergodicity \implies nonperiodicity but converse is not true.
Obviously ergodicity \implies nonperiodicity but converse is not true. Indeed, consider circular billiard or rectangular billiard:

(a) Circular billiard

(b) Rectangular billiard
Obviously ergodicity \Rightarrow nonperiodicity but converse is not true. Indeed, consider circular billiard or rectangular billiard:

(a) Circular billiard

(b) Rectangular billiard

Circular billiard trajectory is periodic if and only if $\alpha/2\pi = m/n$ is rational (irreducible); then billiard trajectory closes after n reflections and m turns around center; otherwise it fills densely (but not uniformly) the ring between two circles.
Rectangular billiard trajectory (with sides a, b) is periodic if and only if $\tan(\alpha) : a/b = m/n$ is rational (irreducible); then billiard trajectory closes after $2m$ reflections from the horizontal sides and $2m$ reflections from the vertical sides; otherwise it fills uniformly densely the whole rectangle.
Rectangular billiard trajectory (with sides a, b) is periodic if and only if $\tan(\alpha) : a/b = m/n$ is rational (irreducible); then billiard trajectory closes after $2m$ reflections from the horizontal sides and $2m$ reflections from the vertical sides; otherwise it fills uniformly densely the whole rectangle.

In both case trajectory “remembers” α and there is no ergodicity.
Figure: Bunimovich Stadium: billiard flow is ergodic: single trajectory is drawn
Still, some billiard trajectories (bouncing balls) are not dense and there is a sequence of eigenfunctions which are not equidistributed. But the set of such trajectories has measure 0 and the sequence of such eigenfunctions has a density 0.
Can one hear the shape of the drum?

In 1966 Mark Kac asked: Can one (with the perfect hearing) hear the shape of the drum?
Can one hear the shape of the drum?

In 1966 Mark Kac asked: Can one (with the perfect hearing) hear the shape of the drum? In other words, knowing all the frequencies (or, equivalently, all eigenvalues of the Dirichlet Laplacian) in domain \(X \), can one restore uniquely \(X \) (up to Euclidean movements).
Can one hear the shape of the drum?

In 1966 Mark Kac asked: Can one (with the perfect hearing) hear the shape of the drum? In other words, knowing all the frequencies (or, equivalently, all eigenvalues of the Dirichlet Laplacian) in domain X, can one restore uniquely X (up to Euclidean movements).

First, mathematicians tried to find spectral invariants—characteristics which must coincide for isospectral domains (domains with the same spectra).
Can one hear the shape of the drum?

In 1966 Mark Kac asked: Can one (with the perfect hearing) hear the shape of the drum? In other words, knowing all the frequencies (or, equivalently, all eigenvalues of the Dirichlet Laplacian) in domain X, can one restore uniquely X (up to Euclidean movements).

First, mathematicians tried to find spectral invariants—characteristics which must coincide for isospectral domains (domains with the same spectra).

For this they used heat equation method: they considered

$$
\sigma(t) := \text{Tr}(e^{t\Delta}) = \sum_n e^{-\lambda_n t} \quad t > 0.
$$

(15)
It was known that

$$\sigma(t) = c_0 t^{-d/2} + c_1 t^{(1-d)/2} + \ldots \quad \text{as} \quad t \to +0 \quad (16)$$

Here (for $d = 2$) c_0 is proportional to the area, c_1 to the perimeter, c_2 Euler’s characteristic (connected to the number of holes), etc – so those are spectral invariants, and one with the perfect hearing can hear them.
It was known that

\[\sigma(t) = c_0 t^{-d/2} + c_1 t^{(1-d)/2} + \ldots \quad \text{as} \quad t \to +0 \quad (16) \]

Here (for \(d = 2 \)) \(c_0 \) is proportional to the area, \(c_1 \) to the perimeter, \(c_2 \) Euler's characteristic (connected to the number of holes), etc – so those are spectral invariants, and one with the perfect hearing can hear them. But the final answer (given in 1992 by Gordon, Webb, and Wolpert) was negative:
One cannot hear the shape of the drum

There exist isospectral but not isometric domains.

Figure: Example of two isospectral domains
One cannot hear the shape of the drum
There exist isospectral but not isometric domains.

Figure: Example of two isospectral domains

Still plenty of questions remain: can we hear the shape of the convex drum? ...
Nodal lines

In yearly 19-th century, a musician and physicist Ernst Chlani made an experiment shown thus confirming an earlier observation of Robert Hooke. It is now called Chladni plates.
Nodal lines

In yearly 19-th century, a musician and physicist Ernst Chlani made an experiment shown thus confirming an earlier observation of Robert Hooke. It is now called Chladni plates.

This experiment has been repeated many times (usually by physics professors trying to impress prospective students), with the violin bow replaced by an electric sound speaker.)
When Chladni showed his experiment in Paris, Napoleon set a prize for the best mathematical explanation.
When Chladni showed his experiment in Paris, Napoleon set a prize for the best mathematical explanation.

Marie-Sophie Germain was the only person who submitted the solution (with the correct approach) but it was rejected: the judging commission felt that “the true equations of the movement were not established,” even though “the experiments presented ingenious results.”

Equation she presented led to the eigenvalue problem for the 4-th order equation

\[
(\frac{\partial^4}{\partial x^4} + \frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2} + \frac{\partial^4}{\partial y^4}) \phi_n = \lambda \phi_n \quad (17)
\]

with two boundary conditions and the lines on the Chladni plates are nodal lines on which eigenfunction \(\phi(x, y) \) vanishes.
When Chladni showed his experiment in Paris, Napoleon set a prize for the best mathematical explanation.

Marie-Sophie Germain was the only person who submitted the solution (with the correct approach) but it was rejected: the judging commission felt that “the true equations of the movement were not established,” even though “the experiments presented ingenious results.” After several attempts however she was able to establish the corresponding equation and on 8 January 1816 she became the first woman to win a prize from the Paris Academy of Sciences.
When Chladni showed his experiment in Paris, Napoleon set a prize for the best mathematical explanation.

Marie-Sophie Germain was the only person who submitted the solution (with the correct approach) but it was rejected: the judging commission felt that “the true equations of the movement were not established,” even though “the experiments presented ingenious results.”

After several attempts however she was able to establish the corresponding equation and on 8 January 1816 she became the first woman to win a prize from the Paris Academy of Sciences.

Equation she presented led to the eigenvalue problem for the 4-th order equation

\[
(\partial_x^4 + \partial_x^2 \partial_y^2 + \partial_y^4) \psi_n = \lambda \psi_n
\]

(17)

with two boundary conditions
When Chladni showed his experiment in Paris, Napoleon set a prize for the best mathematical explanation.

Marie-Sophie Germain was the only person who submitted the solution (with the correct approach) but it was rejected: the judging commission felt that “the true equations of the movement were not established,” even though “the experiments presented ingenious results.” After several attempts however she was able to establish the corresponding equation and on 8 January 1816 she became the first woman to win a prize from the Paris Academy of Sciences.

Equation she presented led to the eigenvalue problem for the 4-th order equation

\[
\left(\partial_x^4 + \partial_x^2 \partial_y^2 + \partial_y^4 \right) \psi_n = \lambda \psi_n
\]

(17)

with two boundary conditions and the lines on the Chladni plates are nodal lines on which eigenfunction \(\psi(x, y) \) vanishes.
Later mathematical interest switched to a simpler problem for a vibrating membrane:

\[
(\partial^2_x + \partial^2_y) \psi_n = -\lambda \psi_n \quad \text{in} \; \mathcal{D},
\]

(18)

\[
\psi_n|_{\partial \mathcal{D}} = 0.
\]

(19)
Later mathematical interest switched to a simpler problem for a vibrating membrane:

\[
(\partial_x^2 + \partial_y^2)\psi_n = -\lambda \psi_n \quad \text{in } \mathcal{D},
\]

\[
\psi_n|_{\partial\mathcal{D}} = 0. \tag{18}
\]

The first question was how many nodal domains are there where a nodal domain is a connected component of \(\{(x, y): \psi_n(x, y) \neq 0\}\). Let the number of nodal domains be \(N(\psi_n)\).
Later mathematical interest switched to a simpler problem for a vibrating membrane:

\[
(\partial_x^2 + \partial_y^2)\psi_n = -\lambda\psi_n \quad \text{in } D, \\
\psi_n|_{\partial D} = 0.
\]

(18) \hfill (19)

The first question was how many nodal domains are there where a nodal domain is a connected component of \(\{(x, y): \psi_n(x, y) \neq 0\}\). Let the number of nodal domains be \(N(\psi_n)\).

In one dimensional case \(\psi_n'' = -\lambda\psi_n, \psi_n(0) = \psi_n(a) = 0\) the answer is simple: \(\psi_n(x) = \sin(\pi nx/a)\) and \(N(\psi_n) = n\).
But two-dimensional case is much more difficult! While we know that \(N(\psi_1) = 1 \) and \(2 \leq N(\psi_n) \leq n \), it is the only easy result. Indeed, consider rectangular domain \(\mathcal{D} = \{(x, y): 0 \leq x \leq a, 0 \leq y \leq b\} \). Then there are eigenfunctions \(\psi_{(m,n)}(x, y) = \sin(\pi mx/a) \sin(\pi ny/b) \) and the nodal lines and domains are shown here:
But two-dimensional case is much more difficult! While we know that \(N(\psi_1) = 1 \) and \(2 \leq N(\psi_n) \leq n \), it is the only easy result. Indeed, consider rectangular domain \(\mathcal{D} = \{(x, y): 0 \leq x \leq a, 0 \leq y \leq b\} \). Then there are eigenfunctions \(\psi_{(m,n)}(x, y) = \sin(\pi mx/a) \sin(\pi ny/b) \) and the nodal lines and domains are shown here:

(we assume that the corresponding eigenvalue \(\lambda_{(m,n)} = \pi^2(m^2/a^2 + n^2/b^2) \) is simple).
But if we slightly perturb the rectangular domain (so it will not be a rectangular anymore) the number of the nodal domains decreases because for generic domains there are no intersections: each of them breaks in two possible ways, opening a passage.
But if we slightly perturb the rectangular domain (so it will not be a rectangular anymore) the number of the nodal domains decreases because for generic domains there are no intersections: each of them breaks in two possible ways, opening a passage.

There are other problems: describe the size of the nodal set \(\{(x, y): \psi(x, y) = 0\} \) (a spectacular progress here was recently made), how nodal lines meet the boundary and so on.
Exotic spectra: mixed spectra

We considered the cases when the spectrum consists of the eigenvalues of the finite multiplicity (discrete spectrum). But in the self-adjoint operators of mathematical physics can have other kinds of the spectra.
Exotic spectra: mixed spectra

We considered the cases when the spectrum consists of the eigenvalues of the finite multiplicity (discrete spectrum). But in the self-adjoint operators of mathematical physics can have other kinds of the spectra.

Schrödinger operator \(H = -\frac{1}{2m} \hbar^2 \Delta + V \)

for the free particle (\(V = 0 \)) has an absolutely continuous spectrum \([0, \infty)\).
Exotic spectra: mixed spectra

We considered the cases when the spectrum consists of the eigenvalues of the finite multiplicity (discrete spectrum). But in the self-adjoint operators of mathematical physics can have other kinds of the spectra.

Schrödinger operator \(H = -\frac{1}{2m}\hbar^2 \Delta + V \)

for the free particle \((V = 0)\) has an absolutely continuous spectrum \([0, \infty)\). In the general case, it has an absolutely continuous spectrum \([0, \infty)\) and eigenvalues in \((-\infty, 0)\); if \(V\) decays fast at infinity, there are finite number of eigenvalues, but for Coulomb potential these eigenvalues accumulate to \(-0\).
Dirac operator $H = \sum_\nu \gamma_\nu (-i\hbar \partial_\nu) + \gamma_0 mc^2 + V$

for the free particle ($V = 0$) has an absolutely continuous spectrum $(-\infty, -mc^2] \cap [mc^2, \infty)$.
Dirac operator $H = \sum_{\nu} \gamma_{\nu}(-i\hbar \partial_{\nu}) + \gamma_0 mc^2 + V$

for the free particle ($V = 0$) has an absolutely continuous spectrum $(-\infty, -mc^2] \cap [mc^2, \infty)$.

With the potential, decaying at infinity, it has a finite or infinite number of eigenvalues in the spectral gap; they may accumulate only to the ends of the gap.
Band spectra

Schrödinger operator with periodic potential V

has a band spectrum: bands of absolutely continuous spectrum are separated by spectral gaps.

In dimension $d = 1$ for generic V there is an infinite number of gaps.
Schrödinger operator with periodic potential V

has a **band spectrum**: bands of absolutely continuous spectrum are separated by spectral gaps.

In dimension $d = 1$ for generic V there is an infinite number of gaps. For $d \geq 2$ there is only a finite number of gaps—Bethe-Sommerfeld conjecture, proved in full generality only about 10 years ago by Leonid Parnovski and Alexander Sobolev.
Band spectra

Schrödinger operator with periodic potential \(V \)

has a **band spectrum**: bands of absolutely continuous spectrum are separated by spectral gaps.

In dimension \(d = 1 \) for generic \(V \) there is an infinite number of gaps. For \(d \geq 2 \) there is only a finite number of gaps—Bethe-Sommerfeld conjecture, proved in full generality only about 10 years ago by Leonid Parnovski and Alexander Sobolev.

Adding another potential \(W \) decaying at infinity, one can place a finite or infinite number of eigenvalues inside each spectral gap.
Integrated Density of States

Instead of eigenvalue counting function $N(\lambda)$ in this case use Integrated Density of States

$$N(\lambda) := \lim_{\ell \to \infty} \frac{N(\lambda, \ell X)}{\text{mes}(\ell X)}$$

where $0 \in X$ is an open bounded domain in \mathbb{R}^d and $N(\lambda, \ell X)$ is an eigenvalue counting function for the same operator in ℓX (stretched X) with the Dirichlet boundary condition.
It turns out that there is a complete spectral asymptotics (even if V is only almost periodic)

$$N(\lambda) \sim \sum_{n=0}^{\infty} \kappa_n \lambda^{d/2-n} \quad \text{as} \quad \lambda \to +\infty.$$

Again, this is a rather new result, due to Leonid Parnovski and Roman Shterenberg.
Landau levels

2D Schrödinger operator with constant magnetic field

\[H = \frac{1}{2m}(-i\hbar\partial_1 - Bx_2/2)^2 + (-i\hbar\partial_2 + Bx_1/2)^2 + V \]

for a free particle \((V = 0)\) has a pure point spectrum of infinite multiplicity, consisting of Landau levels

\[E_n := \frac{1}{2m}(2n + 1)B\hbar, \]

\(n = 0, 1, 2, \ldots:\)
Landau levels

2D Schrödinger operator with constant magnetic field

\[H = \frac{1}{2m}(-i\hbar \partial_1 - Bx_2/2)^2 + (-i\hbar \partial_2 + Bx_1/2)^2 + V \]

for a free particle \((V = 0)\) has a pure point spectrum of infinite multiplicity, consisting of Landau levels \(E_n := \frac{1}{2m}(2n + 1)B\hbar\), \(n = 0, 1, 2, \ldots:\)

Let \(V\) decay at infinity. Then the spectrum consists of eigenvalues \(e_{n,k}\)

\[e_{n,k} \to E_n \text{ as } k \to \infty: \]

depending on \(V\) these eigenvalues accumulate to Landau levels either from the left, or from the right, or from the left and right.
2D Schrödinger operator with constant magnetic field

\[H = \frac{1}{2m}(-i\hbar \partial_1 - Bx_2/2)^2 + (-i\hbar \partial_2 + Bx_1/2)^2 + V \]

for a free particle \((V = 0)\) has a pure point spectrum of infinite multiplicity, consisting of Landau levels \(E_n := \frac{1}{2m}(2n + 1)B\hbar\), \(n = 0, 1, 2, \ldots:\)

\[\bullet \bullet \bullet \]

Let \(V\) decay at infinity. Then the spectrum consists of eigenvalues \(e_{n,k}\), \(e_{n,k} \to E_n\) as \(k \to \infty:\)

\[\bullet \bullet \bullet | \bullet \bullet \bullet | \bullet \]

depending on \(V\) these eigenvalues accumulate to Landau levels either from the left, or from the right, or from the left and right.

Essential spectrum consists of Landau levels.
Classification of spectra

The classification of the spectrum is based on the spectral measure. Each measure μ could be decomposed into the sum of three measures:

- **atomic measure**, supported in the finite or enumerable number of points (point spectrum) with $\mu(\lambda) := \mu((−\infty, \lambda)) = \sum_{k, \lambda_k < \lambda} m_k$,
Classification of spectra

The classification of the spectrum is based on the spectral measure. Each measure μ could be decomposed into the sum of three measures:

- **atomic measure**, supported in the finite or enumerable number of points (point spectrum) with $\mu(\lambda) := \mu((\infty, \lambda)) = \sum_{k, \lambda_k < \lambda} m_k$,

- **absolute continuous measure** with $\mu(\lambda) = \int_{-\infty}^{\lambda} \rho(t) \, dt$, where ρ is the density function.

- **singular continuous measure** with $\mu(\lambda)$ being continuous, but with $\mu'(\lambda) = 0$ almost everywhere.
Classification of spectra

The classification of the spectrum is based on the spectral measure. Each measure μ could be decomposed into the sum of three measures:

- **atomic measure**, supported in the finite or enumerable number of points (point spectrum) with $\mu(\lambda) := \mu((\mathbb{R}^\infty, \lambda)) = \sum_{k, \lambda_k < \lambda} m_k$,
- **absolute continuous measure** with $\mu(\lambda) = \int_{-\infty}^{\lambda} \rho(t) \, dt$,
- **singular continuous measure** with $\mu(\lambda)$ being continuous, but with $\mu'(\lambda) = 0$ almost everywhere.
Classification of spectra

The classification of the spectrum is based on the spectral measure. Each measure μ could be decomposed into the sum of three measures:

- **atomic measure**, supported in the finite or enumerable number of points (point spectrum) with $\mu(\lambda) := \mu((\infty, \lambda)) = \sum_{k, \lambda_k < \lambda} m_k$,

- **absolute continuous measure** with $\mu(\lambda) = \int_{-\infty}^{\lambda} \rho(t) \, dt$,

- **singular continuous measure** with $\mu(\lambda)$ being continuous, but with $\mu'(\lambda) = 0$ almost everywhere.

And until recently in all “real life” examples the singular continuous spectrum was empty.
Ten martini problem

But there was a candidate, almost Mathieu operator which is the discrete Schrödinger operator (on \mathbb{Z})

$$ (H_{\lambda,\alpha,\theta}\psi)_n = \psi_{n+1} + \psi_{n-1} + 2\lambda \cos(2\pi(\theta + n\alpha))\psi_n, \quad (20) $$

which appears in mathematical study of the quantum Hall effect.
Ten martini problem

But there was a candidate, almost Mathieu operator which is the discrete Schrödinger operator (on \mathbb{Z})

$$ (H_{\lambda,\alpha,\theta}\psi)_n = \psi_{n+1} + \psi_{n-1} + 2\lambda \cos(2\pi(\theta + n\alpha))\psi_n, $$

which appears in mathematical study of the quantum Hall effect. For rational α this operator would have a band spectrum, but for irrational α it was conjectured by Mark Kac that it has a spectrum which is Cantor set. And he offered ten bottles of Martini to one who would prove it!
Ten martini problem

But there was a candidate, almost Mathieu operator which is the discrete Schrödinger operator (on \mathbb{Z})

$$(H_{\lambda, \alpha, \theta, \psi})_n = \psi_{n+1} + \psi_{n-1} + 2\lambda \cos(2\pi(\theta + n\alpha))\psi_n,$$ \hspace{1cm} (20)

which appears in mathematical study of the quantum Hall effect. For rational α this operator would have a band spectrum, but for irrational α it was conjectured by Mark Kac that it has a spectrum which is Cantor set. And he offered ten bottles of Martini to one who would prove it!

In 2009 Arthur Avila and Svetlana Zhitomirskaya solved this problem, proving that for all $\lambda \neq 0$ and irrational α the spectrum is a Cantor set.
Cantor set is a closed set which is nowhere dense. However such sets could have positive measures. It is known that the spectrum does not depend on θ.

It is now known, that

- For $0 < \lambda < 1$, $H_{\lambda,\alpha,\theta}$ has surely purely absolutely continuous spectrum.
- For $\lambda = 1$, $H_{\lambda,\alpha,\theta}$ has almost surely purely singular continuous spectrum. (It is not known whether eigenvalues can exist for exceptional parameters.)
- For $\lambda > 1$, $H_{\lambda,\alpha,\theta}$ has almost surely pure point spectrum. It is known that almost surely cannot be replaced by surely.
Cantor set is a closed set which is nowhere dense. However such sets could have positive measures. It is known that the spectrum does not depend on θ.

It is now known, that

- For $0 < \lambda < 1$, $H_{\lambda,\alpha,\theta}$ has surely purely absolutely continuous spectrum.
- For $\lambda = 1$, $H_{\lambda,\alpha,\theta}$ has almost surely purely singular continuous spectrum. (It is not known whether eigenvalues can exist for exceptional parameters.)
Cantor set is a closed set which is nowhere dense. However such sets could have positive measures. It is known that the spectrum does not depend on θ.

It is now known, that

- For $0 < \lambda < 1$, $H_{\lambda, \alpha, \theta}$ has surely purely absolutely continuous spectrum.
- For $\lambda = 1$, $H_{\lambda, \alpha, \theta}$ has almost surely purely singular continuous spectrum. (It is not known whether eigenvalues can exist for exceptional parameters.)
- For $\lambda > 1$, $H_{\lambda, \alpha, \theta}$ has almost surely pure point spectrum. It is known that almost surely can not be replaced by surely.
That’s all!
Thank you!!